
Formulations and Reformulations in Integer
Programming

Michael Trick

Tepper School of Business, Carnegie Mellon, Pittsburgh, PA USA, 15213
trick@cmu.edu?

Abstract. Creating good integer programming formulations had, as a
basic axiom, the rule “Find formulations with tighter linear relaxations”.
This rule, while useful when using unsophisticated branch-and-bound
codes,is insufficient when using state-of-the-art codes that understand
and embed many of the obvious formulation improvements. As these
optimization codes become more sophisticated it is important to have
finer control over their operation. Modelers need to be even more cre-
ative in reformulating their integer programs in order to improve on the
automatic reformulations of the optimization codes.

1 Introduction

Integer programming has shown itself to be an effective mechanism for solving
a wide variety of difficult combinatorial optimization problems of practical in-
terest. While no technique can solve every instance of such problems quickly,
integer programming has been robust and effective enough to play a key role
in solving problems in applications such as airline crew scheduling, combinato-
rial auction winner determination, telecommunications network design, sports
scheduling and many other applications.

Despite the practical success of integer programming, initial forays into this
area are often full of frustration: seemingly obvious formulations “don’t work”,
leading to excessive computation time for even small instances. Success with
integer programmming seems to be a hit-or-miss proposition, with more misses
than hits.

In this note, I examine two problems of practical interest: a transportation
design problem and a sports scheduling problem. We will show that key to the
successful application of integer programming to these problems is the choice of
formulation. In both cases, initial formulations lead to intractible instances, while
“good” formulations can be solved very quickly with modern software. However,
the “good” formulations have to be very creative, since modern software embeds
most of the obvious formulation improvements. –

The general issue of formulations in integer programming has been little stud-
ied. Textbooks generally provide lots of examples in the hope that readers will
? Thanks to DASH Optimization who provided the XPRESS-MP software under their

Academic Partner Program.



2

be able to find generalizations. One exception is the book by Williams [6], which
does concentrate on formulations and provides some broad perspective on in-
teger programming formulations. Otherwise the integer programming literature
contains a vast number of formulations, many with computational experience,
with few generalizations on what leads to a successful formulation. The few gen-
eralizations we have are so well understood that they are included in modern
software (as we will see) to the extent that model formulations do not need to
include the “improvements”: the software will generate them itself.

So, integer programming formulations often “don’t work”, taking excessive
time to find and prove optimal solutions, but modern software already includes
some of the obvious improvements. What is a modeler to do?

By closely examining these two cases, I believe that there are general things
to be learned. First, I think the integer programming paradigm where models are
given by the variables, objective, and linear constraints can be greatly enhanced
by learning from the constraint programming field whereby models are often
given by higher-level constructs. As we will see, within integer programming,
there is a huge difference between the linear constraint

4x1 + 10x2 + 7x3 + 5x4 + 8x5 ≤ 17

and what might be denoted the “knapsack” constraint

knapsack([4, 10, 7, 5, 8], x, 17)

with all the implications that come from our understanding of knapsack con-
straints. Constraint programmers understand this difference, while integer pro-
grammers tend to muddy up the distinction (or leave it to software to handle).

Second, there is still room to provide better formulations to software in the
standard integer programming sense: formulations with better relaxations. It
must be understood, however, that software is already pretty good at “tighten-
ing” formulations, so the modeler has to be quite creative to get beyond what the
software can do. This leads to the interesting question of what can be embedded
in software: in the race between modelers and software, will there always be a
role for modelers or will software be able to include everything a modeler can
think of?

Third, one area where modelers have a advantage is in the creation of prob-
lems with a huge number of constraints or variables. Such formulations can be
very powerful, but are difficult for integer programming codes to generate since
they involve the concept of a cut (or variable) generation algorithm, rather than
generating the cuts or variables themselves. Given the power of such formula-
tions, is there any mechanism for automatically generating these models, or will
human modelers always be required to provide guidance here?

2 Example 1: Transportation Design

My first example is a transportation design problem that came from a consulting
project I did a year or two ago. The company sends packages between pairs of



3

cities. The amount it sends is high volume (multiple trucks per day), so its
trucks go simply between pairs (there are no complicated routing issues) in one-
way trips. For a pair of cities (A,B), the company has a set of packages to be
sent from A to B. Each package has a size, a time for which is available to
load at A, and a time for which it is needed at B. Trucking firms have provided
the company with a set of truck choices. Each “choice” consists of a truck of a
particular size, leaving A at a particular time, and arriving at B at a particular
time. Each choice has a cost. The goal of the company is to choose a set of trucks
that can hold all of the packages and gets them to B on time. A package cannot
be split among multiple trucks.

Naturally the real problem is more complex, with more cities, complicated
routing, multiple capacity constraints, splittable packages, and other aspects,
but this simplified model has most of the critical features.

The natural integer programming formulation for this has a set of binary
(0-1) variables for the decision on whether to use a particular truck (indexed
by i) and a binary variable for whether package j goes onto truck i. We handle
the timing issues by an array can use(i,j) which is 1 if truck i can handle
package j (that is, j is available at A before i departs, and i arrives at B before
j is required there). This results in the formulation in Figure 1 (written in the
language Mosel [7]).

Don’t worry if you are not familiar with Mosel: this is a straightforward
integer programming formulation. Constraints (1) ensure that the total size of
the packages assigned to a truck is no more than the capacity of the truck.
Constraints (2) ensure that x(j,i) is 0 whenever y(i) is (NUM PACKAGE is the
number of packages in the instance). While (2) might look to be a strange for-
mulation of the constraint, this is a “standard” integer programming approach
to handling this requirement. Constraints (3) for every package to go on some
truck. (4) and (5) enforce the integrality restrictions.

I will illustrate the effect of various formulations with a single 10 truck, 20
package instance (the real examples are at least an order of magnitude larger).
The formulation above with this instance solved with XPRESS-MP [7] (Opti-
mizer version 15.20.05) results in 11.2 seconds of computation time (3Gz, In-
tel/Windows machine, 2Gb memory, default settings), with 31,825 nodes in the
branch-and-bound tree. This time is not extreme, but it is much larger than we
would want with such a small instance.

Now, it is a fundamental tenet of integer programming that the key to a
successful formulation is a “tight” linear relaxation. The linear relaxation of the
above model replaces (4) and (5) with

forall (i in TRUCKS)
y(i) <= 1 ! (4’)

forall (i in TRUCKS, j in PACKAGES)
x(j,i) <= 1 ! (5’)

(Note that nonnegativity of the variables is assumed). This results in a linear
program (the x and y variables can take on fractional values). A formulation



4

model "Transportation Planning"

uses "mmxprs"

declarations

TRUCKS = 1..10

PACKAGES = 1..20

capacity: array(TRUCKS) of real

size: array(PACKAGES) of real

cost: array(TRUCKS) of real

can_use: array(PACKAGES,TRUCKS) of real

x: array(PACKAGES,TRUCKS) of mpvar

y: array(TRUCKS) of mpvar

end-declarations

capacity:= [100,200,100,200,100,200,100,200,100,200]

size := [17,21,54,45,87,34,23,45,12,43,

54,39,31,26,75,48,16,32,45,55]

cost := [1,1.8,1,1.8,1,1.8,1,1.8,1,1.8]

can_use:=[1,1,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,0,0, 1,1,1,1,1,1,1,0,0,0,

0,1,1,1,1,0,0,0,0,0, 0,1,1,1,1,1,1,0,0,0,

0,0,1,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,0,0,

0,0,1,1,1,1,0,0,0,0, 0,0,0,1,1,1,1,1,1,0,

0,0,0,1,1,1,1,0,0,0, 0,0,0,1,1,1,0,0,0,0,

0,0,0,0,1,1,1,1,1,0, 0,0,0,0,1,1,1,1,0,0,

0,0,0,0,1,1,1,1,1,1, 0,0,0,0,0,1,1,1,1,1,

0,0,0,0,0,1,1,1,1,0, 0,0,0,0,0,0,1,1,1,1,

0,0,0,0,0,0,0,1,1,1, 0,0,0,0,0,0,0,0,1,1]

Total := sum(i in TRUCKS) cost(i)*y(i)

forall(i in TRUCKS)

sum(j in PACKAGES) size(j)*x(j,i) <= capacity(i)

! (1) Packages fit

forall (i in TRUCKS)

sum (j in PACKAGES) x(j,i) <= NUM_PACKAGE*y(i)

! (2) use only

! paid for trucks

forall (j in PACKAGES)

sum(i in TRUCKS) can_use(j,i)*x(j,i) = 1

! (3) every

! package on truck

forall (i in TRUCKS)

y(i) is_binary ! (4) no partial trucks

forall (i in TRUCKS, j in PACKAGES)

x(j,i) is_binary ! (5) no package splitting

minimize(Total)

end-model

Fig. 1. Transportation formulation



5

with linear relaxation F1 is tighter than another with relaxation F2 if every
fractional feasible solution to F1 is also a fractional feasible solution to F2 and
the reverse is not true. Note that tightness is a property of the linear relaxation
of a formulation.

Every integer programmer will look at the formulation given and immedi-
ately identify improvements. The main issue is in the constraints (2). These are
well-known “weak” constraints. For example, it is straightforward to see that a
package can be assigned to a truck whose corresponding y value is as small as

1
NUM PACKAGE . We can “cut off” this sort of solution by replacing (2) with the
constraints

forall (i in TRUCKS, j in PACKAGES) x(j,i) <= y(i)
!(2’) tighter formulation

Now, if x(j,i) = 1 for a particular i,j then the corresponding y(i) must
also be 1. The addition of these constraints leads to a tighter formulation. Note
that the new formulation is quite a bit larger: instead of one constraint for every
truck, we have a constraint for every (truck,package) pair. While this makes it
slower to solve the linear program at each node of the branch-and-bound tree,
the resulting decrease in size of the tree far outways this.

Further improvements can be had by replacing

forall(i in TRUCKS)
sum(j in PACKAGES) size(j)*x(j,i) <= capacity(i)

! (1) Packages fit

with

forall(i in TRUCKS)
sum(j in PACKAGES) size(j)*x(j,i) <= capacity(i)*y(i)

! (1’) Packages fit

Again, depending on the exact coefficients, this can lead to a tighter formu-
lation.

At this point, integer programmers step back, look self-satisfied, and move
on to other problems.

Unfortunately, when put into XPRESS-MP (other sophisticated codes will
work similarly), the results are not what was expected. The time for our instance
goes up, doubling to 22.1 seconds with 50,631 nodes in the branch-and-bound
tree.

What has happened? The primary point is that the relaxation solved by
XPRESS-MP or any other top-quality code is not the same as the naive relax-
ation. The code already has the ability to identify “obvious” tightenings. In the
case of constraints (2), there is a technique during preprocessing that sets each
binary variable to 1 and determines any variable fixing that might occur (ex-
actly as would happen with constraint propagation in constraint programming).
If variable y must be 1 once x is 1, then the constraint y ≥ x can be added. This



6

will generate constraints (2’) from (2) automatically. From a modeler’s point of
view, there is no need to add (2’): that “trick” is already known to the software.

Now, if the code is unsophisticated, it is important to add tightenings such
as 2’. Turning off preprocessing and cut generation from XPRESS-MP leads to
a formulation and solution code that takes 1851 seconds and 2.4 million nodes
with 2’. Without 2’, after the same 1851 seconds, branch-and-bound has taken
5 million nodes (since the linear program is smaller) but still has a duality gap
with a lower bound of 1.22 and an upper bound (feasible solution) of 8.4 (8.2 is
optimal). Time to optimality is measured in days.

It is somewhat mysterious why adding 2’ to the sophisticated code actually
slows things down for this instance. At this point, I have no better answer than
the XPRESS-MP is a collection of heuristics: heuristics to find feasible solutions,
heuristics to find tightening constraints, and heuristics to search the tree. Given
the role of the heuristics, it is perhaps not surprising that a better formula-
tion can sometimes lead to worse times once all of the preprocessing and cut
identification is done.

This interaction of formulation with solution code is shown even stronger
with the addition of the constraint:

sum(i in TRUCKS)
capacity(i)*y(i) >= sum (j in PACKAGES)size(j)

! (6) Have sufficient capacity

This constraint says simply: the total capacity of the trucks chosen must be
sufficient to handle the total size of the packages to be transported.

This constraint does not tighten the linear relaxation: it is a linear combi-
nation of previous constraints, so it cannot improve the relaxation. Standard IP
formulation approaches would therefore not include the constraint.

Aardal [1] noted the surprising result that if you include this redundant
constraint into the formulation, sophisticated codes solve instances much faster
(they worked on a closely related location problem, where the timing aspects of
the packages do not come into play).

For our instance, solution is instantaneous, and no branching is done: the
problem is solved at the initial relaxation. How can adding a constraint that
does not improve the relaxation affect the solution process to such an extreme
extent?

Again, the key is that XPRESS-MP (or any other sophisticated code) does
not solve the naive relaxation. In this case, the constraint (6) is recognized as
a specially structured constraint, called a knapsack constraint. A tremendous
amount is known about knapsack constraints (they form the basis for the ground-
breaking work of Crowder, Johnson and Padberg [3] who used an understanding
of knapsack constraints to solve general integer programs, a fundamental break-
through in computational integer programming), and that knowledge is embed-
ded in current codes. In particular, a set of constraints called cover inequalities
are known to provide a much tighter formulation than just the linear knapsack



7

constraint alone. The constraints are added “automatically” by XPRESS-MP,
resulting in an extremely tight formulation that is solved without branching.

This is an example of an interaction between the human modeler and the soft-
ware. The modeler is needed to identify the knapsack inequality (at least current
software does not automatically identify the redundant knapsack) but then the
software is able to bring in all of its knowledge about knapsack constraints.

This development is not surprising (I believe) for constraint programmers. In
constraint programming, it is common to add redundant constraints in order to
improve propagation. In integer programming, however, it is unusual to add a
constraint that doesn’t improve the linear relaxation in order to take advantage
of the automatic cut generation available in the software.

This would be more obvious to integer programmers if the solution codes
offered more flexibility in the handling of cover and other inequalities. Currently,
for every code I am aware of, you can do no more than set a level of aggressiveness
in searching for cover inequalities (0=no inequalities, 1=1 round of search, etc.).
It is not possible to identify some constraints as good prospects for finding
cover constraints and others as poor areas. If integer programming codes were
like constraint programming codes, then it would be possible to write (6) as
something like

knapsack(capacity,y,’>’,sum(j in PACKAGES) size(j))
with STRONGCUTS

or

knapsack(capacity,y,’>’,sum(j in PACKAGES) size(j))
with FASTCUTS

or

knapsack(capacity,y,’>’,sum(j in PACKAGES) size(j))
with NOCUTS

where the ’>’ denotes a “≥” knapsack and STRONGCUTS, FASTCUTS, and
NOCUTS tell the optimizer which cut generation routine to us. This will guide
software in the amount of cuts to generate for this particular constraint, rather
than the current approach of setting the generation for all constraints at once.

To review for this problem, a naive software implementation of branch-and-
bound for a simple formulation doesn’t work: solutions take hours or days. Tight-
ening the formulation in the traditional sense only works for simple codes: sophis-
ticated codes already include standard tightening. The best formulation requires
understanding the capabilities of the software and adding a seemingly irrelevant
constraint.

3 Example 2: Sports Scheduling

For our second problem, I will discuss some experiments on the Traveling Tour-
nament Problem. The Traveling Tournament Problem (TTP), introduced by



8

Easton, Nemhauser, and Trick [4], is a simplification of a sports scheduling
problem that arose in the scheduling of Major League Baseball (MLB). The
requirements for MLB take many pages to describe, but the key aspects of a
“good” MLB schedule is flow (the number of consecutive home or away series
a team plays) and distance traveled (how far teams must fly in the schedule).
Additional “real world” constraints include stadium availability, the scheduling
of key rivals, holiday requirements and much more. The TTP ignores most of
these requirements and concentrates on flow and distance.

Given n teams with n even, a double round robin tournament is a set of games
in which every team plays every other team exactly once at home and once away.
A game is specified by an ordered pair of opponents. Exactly 2(n − 1) slots or
time periods are required to play a double round robin tournament. Distances
between team sites are given by an n by n distance matrix D. Each team begins
at its home site and travels to play its games at the chosen venues. Each team
then returns (if necessary) to its home base at the end of the schedule.

Consecutive away games for a team constitute a road trip; consecutive home
games are a home stand. The length of a road trip or home stand is the number
of opponents played (not the travel distance).

The Traveling Tournament Problem is defined as:

Input: n, the number of teams; D an n by n integer distance matrix; L, U
integer parameters.

Output: A double round robin tournament on the n teams such that

– The length of every home stand and road trip is between L and U inclusive,
and

– The total distance traveled by the teams is minimized.

The parameters L and U define the trade off between distance and pattern
considerations. For L = 1 and U = n− 1, a team may take a trip equivalent to
a traveling salesman tour. For small U , teams must return home often, so the
distance traveled will increase. In this paper, we will concentrate on L = 1 and
U = 3, which corresponds with the MLB ideal.

In addition, a “no-repeaters” constraint can be added: if team A plays at
team B in slot t, then B does not play at A in slot t + 1.

Instances of the TTP seem very difficult, even for relatively small n. For
n = 4, optimal solutions are relatively easy to find, but even n = 6 is nontrivial.
The largest instances solved to optimality are at n = 8 (in contrast, MLB has
two leagues: one with n = 14 and one with n = 16).

Many researchers have worked on heuristics for this problem, but there has
been relatively little work on complete (or provably optimal) approaches.

The most direct formulation for this problem as an integer program defines a
variable plays(i,j,t) which equals 1 if team i plays at team j in slot t. In this
way, we can ensure a double-round robin structure with constraints like (where
TEAMS is defined to be the range 1 . . . n and SLOTS is 1 . . . 2n− 2:



9

forall (i in TEAMS, t in SLOTS)
plays(i,i,t) = 0 ! (1) no team plays itself

forall (i in TEAMS, t in SLOTS)
sum(j in TEAMS) (plays(i,j,t)+plays(j,i,t)) = 1

! (2) team i plays one team in each slot

forall (i,j in TEAMS | i <> j)
sum (t in SLOTS) plays(i,j,t) = 1

! (3) team i plays at team j exactly once

Handling the “no more than 3 home or away in a row” can be handled with
constraints like

forall (i in TEAMS, t in 1..2*n-5)
1 <= sum(j in TEAMS) (plays(i,j,t)+plays(i,j,t+1)+

plays(i,j,t+2)+plays(i,j,t+3)) <= 3
! (4) no more than 3 away in a row

These variables are not sufficient for the objective function, however. To get
the distance traveled, additional variables are needed. Define location(i,j,t)
to be 1 if team i is in location j in slot t (so location(i,i,t)=1 implies i is home
in slot t. Define follows(i,i1,i2,t) to be 1 if team i travels from location i1
to location i2 between slots t and t + 1. Then the following constraints links all
the variables together:

forall (i,j in TEAMS, t in SLOTS)
if (i=j) then
location(i,i,t) = sum(k in TEAMS) plays(k,i,t)

else
location(i,j,t) = plays(i,j,t)

end-if
! (5) define location in terms of plays

forall (i in TEAMS)
forall (j1,j2 in TEAMS, t in 1..2*n-3)
follows(i,j1,j2,t) >=

location(i,j1,t)+location(i,j2,t+1) - 1
! (6) define follows in terms of location

Now the total distance traveled is

Total := sum(i,j,k in TEAMS, t in 1..2*n-3) DIST(j,k)*follows(i,j,k,t)+
sum(i,j in TEAMS) DIST(i,j)*location(i,j,1)+
sum(i,j in TEAMS) DIST(j,i)*location(i,j,9)

! (7) Distance traveled

The “no-repeaters” requirement is



10

forall (i,j in TEAMS, t in 1..2*n-3)
plays(i,j,t)+plays(j,i,t)+

plays(i,j,t+1)+plays(j,i,t+1) <= 1
! (8) no repeaters

This gives a complete formulation for the TTP. Unfortunately, putting this
formulation into XPRESS-MP gives very poor result, even for n = 6. The initial
relaxation value for that instance (letting XPRESS-MP be aggressive in adding
initial cuts) is only 2186, while the optimal value is 23,916. After 1800 seconds,
the lower bound has improved to only 5434 , while the best feasible solution
found is 25650 . Again, running to optimal takes days.

To improve this formulation, it might be possible to add constraints to give
a better linear relaxation. For instance, since the assignment for every week
corresponds to a matching problem, Trick [5] suggests adding the “odd-set”
constraints for each week.

An alternative (and better) approach is to reformulate by redefining the vari-
ables. The formulation given seems quite complicated because multiple types of
variables are needed to correctly model the “distance traveled” aspects. Instead
of using plays(i,j,t) as a fundamental variable, we can formulate this prob-
lem using variables corresponding to each road trip and home stand. Define
trips1(i,i1,t) to be 1 if team i makes a trip to team i1 in slot t, and then
returns home. Let trips2(i,i1,i2,t) be 1 if team i makes a trip to i1 in slot t
then on to team i2 in slot t+1 and then returns home. trips3(i,i1,i2,i3,t)
is the corresponding variable for length-3 trips: first to i1, then i2, then i3 be-
fore returning home. Similarly, home1(i,t) corresponds to a length-1 homestand
in slot t; home2(i,t) a length-2 homestand in t and t + 1; and home3(i,t) a
length-3 homestand beginning at t.

Each road-trip variable has a cost, corresponding to the distance traveled.
This gives an objective function of

Total := sum(i,i1 in TEAMS,t in SLOTS) cost1(i,i1,t)*trips1(i,i1,t)+
sum(i,i1,i2 in TEAMS, t in SLOTS) cost2(i,i1,i2,t)*trips2(i,i1,i2,t)+
sum(i,i1,i2,i3 in TEAMS, t in SLOTS) cost3(i,i1,i2,i3,t)*trips3(i,i1,i2,i3,t)

For constraints, we still have constraints that require each team to play at
most one game in each slot. This looks like the following (the constraint for slots
1 and 2 is slightly different, based on which trips are feasible for the slot):

forall (i in TEAMS, t in 3..10)
sum(i1 in TEAMS) trips1(i,i1,t) +
sum (i1,i2 in TEAMS) (trips2(i,i1,i2,t)+trips2(i,i1,i2,t-1)) +
sum (i1,i2,i3 in TEAMS) (trips3(i,i1,i2,i3,t)+trips3(i,i1,i2,i3,t-1)+

trips3(i,i1,i2,i3,t-2)) +
home1(i,t) +
home2(i,t)+home2(i,t-1) +
home3(i,t)+home3(i,t-1)+home3(i,t-2) = 1



11

H H

@NYM

@ATL @PHI

Slot t Slot t+1

≤ 1

Fig. 2. Constraint: One Game per Slot

This is illustrated in Figure 2.
There are also constraints that either i is away in slot t or some team is away

and playing i in that slot (the subscripts get a little messy):

forall (i in TEAMS, t in 3..10)
sum(i1 in TEAMS) trips1(i,i1,t) +
sum (i1,i2 in TEAMS) (trips2(i,i1,i2,t)+trips2(i,i1,i2,t-1)) +
sum (i1,i2,i3 in TEAMS) (trips3(i,i1,i2,i3,t)+trips3(i,i1,i2,i3,t-1)+

trips3(i,i1,i2,i3,t-2)) +
sum(i1 in TEAMS) trips1(i1,i,t)+
sum(i1,i2 in TEAMS) trips2(i1,i2,i,t-1)+
sum(i1,i2 in TEAMS) trips2(i1,i,i2,t)+
sum(i1,i2,i3 in TEAMS) trips3(i1,i2,i3,i,t-2) +
sum(i1,i2,i3 in TEAMS) trips3(i1,i2,i,i3,t-1) +
sum(i1,i2,i3 in TEAMS) trips3 (i1,i,i2,i3,t)= 1

It is also necessary to ensure that no away trip for team i is followed imme-
diately by another away trip:

forall (i,i1 in TEAMS, t in 3..2*n-3)
trips1(i,i1,t)+trips1(i1,i,t)+
trips1(i,i1,t+1)+trips1(i1,i,t+1)+
sum(i2 in TEAMS) (trips2(i,i2,i1,t-1)+trips2(i1,i2,i,t-1)) +
sum(i2 in TEAMS) (trips2(i,i1,i2,t+1)+trips2(i1,i,i2,t+1)) +
sum(i2,i3 in TEAMS) (trips3(i,i2,i3,i1,t-2)+trips3(i1,i2,i3,i,t-2)) +
sum(i2,i3 in TEAMS) (trips3(i,i1,i2,i3,t+1)+trips3(i1,i,i2,i3,t+1)) <= 1

Figure 3 illustrates this constraint.

Additional constraints preclude a home-stand after a home-stand and re-
peaters.

This formulation is inspired by the “variable generation” formulations useful
in airline crew scheduling and many other applications (see Barhart et al. [2] for
a fine survey). By encapsulated complicated structure (in this case, the distance
traveled) in an expanded variable definition, we can create formulations with



12

@NYM @PHI

@ATL

@FLA @MON

@NYM

Slot t Slot t+1

@NYM

≤ 1

Fig. 3. Constraint: No away after away

tight relaxations. In this case, we do not have to resort to branch-and-price since
the number of variables is still relatively small (4400 for the n = 6 case).

The strength of this formulation is shown immediately by XPRESS-MP. The
initial relaxation value for n = 6 is 21624.7, an order of magnitude larger than
that of our initial formulation. In fact, we obtain the optimal solution for this
instance after “merely” 4136 seconds and 66,000 nodes in the tree.

Despite the improvement, the time required is still quite long, and does not
bode well for solving larger instances. There are some “obvious” strengthenings
available. For instance, for the “no away trip after away trip” constraint, it is
possible to add more variables to the constraint. This is illustrated in Figure 4.

@NYM @PHI

@ATL

@FLA @MON

@NYM

≤ 1

H H

H H H

Slot t Slot t+1
Fig. 4. Constraint: No away after away (strengthened)

This clearly is a strengthening, and resulted in significant improvement in
previous versions of XPRESS-MP. Putting this constraint in the current version
of XPRESS-MP, however, leads to another nasty surprise: the initial relaxation



13

value is identical, and the overall solution trajectory is a little worse (taking 15
seconds longer to find and prove an optimal solution).

What has happened? Again, I have added a strengthening that the system
already knows about: the “strengthened” constraint is known as a “clique in-
equality” and is part of the XPRESS-MP repertoire. XPRESS-MP can generate
that strengthening on its own: my strengthening of the constraint did not help.
In fact, it slightly slowed the solution, for reasons that are unclear. If I want to
improve my formulation, I need to find constraints or other reformulations that
the sophisticated software package does not know about.

To summarize this example, again we have an initial formulation that is
hopeless, and XPRESS-MP (other any other package, I believe) cannot improve
on it. By reformulating the model using different variables, we ended up with a
much better formulation. Trying to improve that model, however, let to overlap
with the optimization package’s knowledge, and led to no improvement.

4 Conclusions

Through two examples, I have argued that traditional approaches to “reformu-
lation” in integer programming are not practical, since modern, sophisticated
software already understands and implements obvious modeling “tricks”. In or-
der to improve on a formulation it is necessary to understand what the software
knows and to provide insight beyond that knowledge base. For the transporta-
tion problem, this insight was in the form of a “redundant” but very important
knapsack constraint that was “hidden” in the formulation. Adding this con-
straint allowed the software to add additional constraints, greatly improving the
formulation. For the sports scheduling problem, the added knowledge was in the
form of reformulating the variables of the problem to better encapsulate compli-
cated structure. This reformulation was much better than the initial approach,
though still not sufficient to solve even small instances (like the n = 8 instance).

These experiences suggest that, at least for integer programs, the art of im-
proving formulations is getting more complicated: the simple rules of the past
(“find formulations with better relaxations”) are becoming less relevant as the
relaxation used by the software is often not the relaxation given by the model.
Understanding the software sufficiently to provide improved relaxation relative
to the solved-relaxation requires highly sophisticated knowledge, and knowledge
that can go out of date with every version released of the software.

But there still is room for the modeler to improve the formulations. Is it pos-
sible that the software packages will eventually “find” the knapsack constraint
needed for the transportation problem? Probably. Can the software do the vari-
able reformulation needed for the sports scheduling problem? Probably not, and
almost certainly not if the integer program is only given the formulation in terms
of variables, linear constraints, and linear objective. This sort of reformulation
requires a deeper understanding of the problem structure.

In order to further develop “reformulations” as a research area and an area
of practical interest, it would be useful to have more control over the solving of



14

models. It is in that spirit that I proposed the concept of defining some linear
constraints as knapsack constraints while others are just linear constraints: this
would define to the solver where the modeler thinks it is likely there are useful
strengthenings (such as cover constraints).

Further, while most work in integer programming formulations have tried to
find one integer programming formulation based on a higher level description of
a problem, perhaps it is useful to come up with approaches that can generate
multiple formulations for experimentation. Can we create a system that begins
with a high level description of a problem and generates a series (or continuum)
of formulations, perhaps based on the number of variables or constraints?

At this point, sophisticated software has embedded a lot of the simple refor-
mulation rules integer programmers have developed. We now are challenged to
find more sophisticated approaches to spur on the software.

References

1. Aardal, K. (1998). Reformulation of capacitated facility location problems: how
redundant information can help, Annals of Operations Research 82 289-308.

2. Barnhart C., Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P. and Vance P.H.
(1998), Branch-and-Price: Column Generation for Huge Integer Programs, Opera-
tions Research 46, 316.

3. Crowder H., Johnson E.L. and Padberg M.W. (1983), Solving Large Scale Zero-One
Linear Programming Problems, Operations Research 31: 803-834.

4. Easton, K., G.L. Nemhauser, and M.A. Trick (2003), Solving the Traveling Tour-
nament Problem: A Combined Integer and Constraint Programming Approach, in
PATAT’2002, E. Burke and P. Causmaecker (eds), Springer Lecture Notes in Com-
puter Science 2740, 63–77.

5. Trick, M.A. (2003). Integer and Constraint Programming Approaches for Round
Robin Tournament Scheduling, in PATAT’2002, E. Burke and P. Causmaecker (eds),
Springer Lecture Notes in Computer Science 2740, 63–77 (2003).

6. Williams H.P. (1999), Model Building in Mathematical Programming, Wiley, New
York.

7. XPRESS-MP Extended Modeling and Optimisation Subroutine Library, Reference
Manual (2004), Dash Associates, Blisworth House, Blisworth, Northants.


