
Small Binary Voting Trees

Michael Trick

Abstract

Sophisticated voting on a binary tree is a common form of voting struc-
ture, as exemplified by, for example, amendment procedures. The prob-
lem of characterizing voting rules that can be the outcome of this pro-
cedure has been a longstanding problem in social choice. We explore
rules over a small number of candidates, and discuss existence and non-
existence properties of rules implementable over trees.

1 Introduction

The problem of characterizing voting rules implementable by backward induc-
tion (or sophisticated voting) has been a longstanding problem in social choice.
Consider a set C of candidates from which an election will choose a winner. A
sophisticated voting tree is a binary tree where at each node of the tree, voters
choose between the two candidates who have survived the process to that node,
where the process begins at the leaves and works towards the root. For instance,
in the tree in figure 1, the voters begin by choosing between candidates b and
c and the winner then is compared with a.

a b c

Figure 1: Simple Tree on Three Candidates

The relationship of this tree to backwards induction was developed by Dutta
and Sen [4].

Given a voting tree, the winner of the election is clearly a function of the
underlying majority tournament (for simplicity, we will assume that preferences
are strict and there are an odd number of voters, so the majority tournament
is complete and the winner is therefore well defined). But what functions, or
voting rules, are implementable on trees (or, in this paper implementable, for
short)? For instance, while any voting rule over three candidates that chooses
from the top cycle of the tournament is implementable, similar results do not
hold for four candidates. In particular, in figure 2, no voting rule that chooses
candidate b for tournament 1 and a for tournament 2 is implementable on
trees (in these diagrams, we draw an arc from i to j if i is preferred to j by
the electorate). In fact, of the 16 pairs of possible winners over these two
tournaments, only five pairs are implementable (reasons for this will be given
later).

There have been many partial results on characterizing implementable rules.
There are particular rules for which implementations are known. Moulin [9]

Figure 2: Pair of Tournaments over 4 Candidates

and Mueller [11] showed particular veto-type social choice functions are imple-
mentable, Herrero and Srivastava [6] showed that every rule over three candi-
dates is implementable, Dutta and Sen [4] showed a particular rule choosing
from the uncovered set is implementable, and Coughlan and Le Breton [2] ex-
tended this to a particular choice in the ultimate uncovered set.

A general characterization continues to be elusive. McKelvey and Niemi
[7] showed that any onto voting rule must choose from the top cycle, and rec-
ognized that such a restriction is not sufficient. An effort towards sufficiency
was Srivastava and Trick [13]. They characterized implementable voting rules
defined on pairs of tournaments, and conjectured that pairwise implementation
was sufficient for rules defined over all tournaments. A decade has passed since
this result, and the conjecture remains open. The purpose of this paper is to
provide computational results to both support the conjecture and to identify
possible locations of counterexamples.

Section 2 of this paper outlines the known results on implementable rules.
Section 3 outlines a computational approach to generating implementable rules
and shows that there are exactly three non-isomorphic rules over three can-
didates (among all rules which choose the Condorcet winner when it exists).
Section 4 then provides a series of results over tournaments on four candidates.
The final section then outlines a research agenda for finally characterizing im-
plementable rules.

2 Basic Results

Given a set C of n candidates, a tournament over C is a complete binary irreflex-
ive relationship over C (so, for two candidates i and j, either iT j or jT i, but not
both). In our case, the tournament summarizes the voting outcome between
any pair of candidates giving which candidate is preferred by the electorate.

A voting tree is a binary tree where each leaf of the tree is labeled with some
candidate from C. Given a tournament T , applying T to a voting tree means
iteratively finding two leaves with a common parent, removing those leaves, and
labeling the parent with the winner under T between the two leaf labels. This
continues until the root of the tree is labeled. The resulting label is the winner
of T relative to the tree.

Let T be a set of tournaments over C. A voting rule over T is a function
f : T ∈ T → C. f is an implementable rule if there exists a voting tree such
that when the tournament T is applied to the tree, f(T) wins, for all T ∈ T .

For a tournament T , the top cycle of T is the minimal subset of candidates
with the property that every candidate in the subset beats every candidate
outside the subset. If the top cycle of T is a singleton a, then a is the Condorcet
winner for T .

It is clear that for an implementable rule f , if a is the Condorcet winner
for a tournament T1 ∈ T , then either f(T1) = a or f(T) 6= a for all T ∈ T .
The former occurs whenever the label a is applied anywhere in the voting tree;
the latter when the label a is excluded from the tree. For this latter case, the
rule is then defined on a subset of C. For simplicity, this paper will only be
concerned with voting rules that choose the Condorcet winner when it exists.
Equivalently, we are concerned with onto voting rules.

For Condorcet voting rules, an implementable rule must always choose from
the top cycle. The example in figure 2 shows that condition is not sufficient
for implementability, however. Srivastava and Trick [13] give a necessary and
sufficient condition for implementability for rules defined over two tournaments.
The condition is as follows:

Let T and T ′ be tournaments defined on a ground set C. We are concerned
with voting rules defined over (T, T ′). If there exists a binary voting tree that
implements (i, j) (so i wins for T and j for T ′), we write (i, j) ∈ I.

A set S ⊆ C is prime (relative to T and T ′) if there does not exist a partition
of S into two or more nonempty subsets such that S = S1 ∪ S2 ∪ . . . Sk and

1. a ∈ Si, b ∈ Sj , i 6= j implies either aTb, aT ′b or bTa, bT ′a, and

2. a ∈ Si, b ∈ Sj , i 6= j, aTb implies a′Tb′ for all a′ ∈ Si and b′ ∈ Sj .

Intuitively, a prime set is a set that cannot be decomposed into subsets
such that T and T ′ agree and are consistent in the relations between items in
different subsets.

Let the top cycle of T restricted to a set S ⊆ C be denoted as tc(S) and the
corresponding top cycle at T ′ as tc′(S).

Theorem 1 [13] (a, b) ∈ I if and only if there exists a prime set S with a ∈
tc(S), b ∈ tc′(S).

If we return to the four candidate examples in figure 2, we can see what
can and cannot be implemented over these two tournaments. The set of all
candidates is not prime, due to the decomposition illustrated in figure 3.

Figure 3: Decomposition

So the only pairs that are implementable over these two tournaments are
(a, a), (b, b), (c, c), (d, d) and (a, b). This is the smallest case of a non-prime set.

Srivastava and Trick further conjecture that the condition in the theorem is
sufficient to define implementable rules. They conjecture that any rule defined
over all tournaments is implementable if and only if it is implementable over
every pair of tournaments. We’ll denote this conjecture the Pairwise Conjecture.

For tournaments with a small number of candidates, this conjecture implies
a specific set of implementable rules. For three candidates, there are only two
tournaments that do not include Condorcet winners, as shown in figure 4.

Figure 4: Three candidate tournaments

Since C is prime relative to these two tournaments, the Pairwise Conjecture
implies there are exactly 9 implementable Condorcet rules. We will show the
trees for these rules in the next section.

For four candidates, the situation is much more complex. We will show that
the Pairwise conjecture implies there are exactly 51238 = 1,601,806,640,625
implementable Condorcet rules. While a direct search for these seems beyond
current capabilities, we explore aspects of this set of rules in Section 4.

3 Computational Procedure

In this section, we provide a computational approach to generating all imple-
mentable rules over a set of tournaments T . If there are m tournaments in T ,
then we can arbitrarily order that set as T1, T2, . . . Tm and represent a rule by
an m-tuple a1a2 . . . am where ai is the winner for tournament Ti.

We iteratively generate all rules by beginning with the n rules (for |C| = n)
jj . . . j for each j ∈ C. Then, given two rules j1j2 . . . jm and k1k2 . . . km, we
can generate a new rule by choosing the winners comparing j1 and k1 under
T1, j2 and k2 under T2 and so on. This has the effect of creating a new tree
where the j rule is the left branch and the k rule is the right branch.

The procedure may generate the same rule repeatedly, so it is important to
identify an already-generated rule quickly. This can be done with a hashing
function on the rules. The exact hashing function is unimportant providing
the number of trees assigned to any particular hash value is relatively low. In
our implementation, we use a hash function that is a function of the number of
times each candidate appears in the rule along with some lesser terms.

We also want to generate the smallest tree for each rule (in terms of number
of leaves in the tree). This is done by always combining trees that result in
the minimum number of leaves in the combined tree. We begin with 1 leaf in
each of the jj . . . j trees. Combining a rule with n1 leaves with one of n2 leaves
results in a tree of n1 + n2 leaves. This lets us generate all trees of k leaves by
combining the k− 1 leaf trees with the 1 leaf trees, the k− 2 leaf trees with the
2 leaf trees and so on. Once all the k leaf trees are generated, the routine can
move onto k + 1 leaf trees.

The final optimization to be done is to identify all isomorphic rules, where
one rule is isomorphic to another if a permutation of the candidates applied to
one rule’s tree results in the other rule as winners. Identifying isomorphic rules
allows the presentation of a smaller number of trees. As long as the number of
candidates is not large, this can be done by enumeration.

The resulting code is able to generate millions of rules in a few hours.
While this is not fast enough for a complete enumeration of the more than
1,000,000,000,000 (conjectured) four candidate rules, it is enough to determine

the set of implementable rules over smaller sets of tournaments.
To begin, it is simple to calculate the trees over three candidates. There

are exactly three minimum-sized, non-isomorphic onto voting trees on three
candidates. These are shown in figure 5.

a b c a b a c
a b c b c

Figure 5: Trees on Three Candidates

Since all the trees contain all three candidates, the rules they implement are
Condorcet. If there is no Condorcet winner, the first tree always chooses a, the
second tree chooses the loser between b and c, and the third tree chooses the
winner between b and c (it is interesting the tree for choosing the winner is larger
than the tree choosing the loser). For each tree, there are three relabelings that
result in different rules, so these three trees give 9 rules, as required by the
Pairwise Conjecture.

These trees show an intriguing sort of agenda manipulation: the choice of
tree leads to strong effects on the candidate. In the first tree, neither b nor c
can win (unless they are Condorcet winners), but it is obvious that the tree is
biased towards a. It is not obvious that the other two trees are biased against
a, but in neither case can a win without being the Condorcet winner.

4 Results on Four Candidates

While we cannot generate all rules for all tournaments on four candidates, we
can do so for some interesting subsets of tournaments.

The key insight into analyzing four-candidate voting rules is that, for two
tournaments T1 and T2 over four candidates, if T1 and T2 are not isomorphic
to the tournaments in figure 2 (by relabeling candidates), then the entire 4-
candidate set C is prime. So for pairs not isomorphic to those in figure 2,
all pairs of candidates are implementable. A brute force calculation shows that
every one of the 24 tournaments with all candidates in the top cycle has exactly
one other tournament for which the pair is isomorphic to those in figure 2. As
stated before, over a pair like that in figure 2, there are only 5 implementable
rules (not 42 = 16), so there are 512 =244,140,625 rules over the those 24
tournaments (assuming the Pairwise conjecture).

In addition to the 24 tournaments where the top cycle contains all four can-
didates, there are 8 tournaments with three candidates in the top cycle. Pairing
each of these with every other tournament results in a prime set consisting of at
least the candidates in the top cycle, so for each of the 512 rules on tournaments
with 4-candidate top cycles, there are 38 choices from the three-candidate top
cycles. Since all remaining tournaments have a condorcet winner, this gives a
total of 51238 =1,601,806,640,625 onto rules over all tournaments.

While this number is beyond current capability to handle directly, we are
able to analyze different classes of rules. These classes are of independent
interest since they give interesting trees in their own right, and they provide
indirect confirmation of the Pairwise Conjecture since they give sets where no
counterexample exists.

All tournaments with a Condorcet Loser. There are eight such tournaments,
and each has three candidates in the top cycle. All pairs are prime over their top
cycles, so the Pairwise Conjecture implies there are 38 = 6561 implementable
voting rules. The computational procedure shows that is, indeed the case. Table
1 gives the number of rules of each size; figure 6 gives an example of a size 16
voting rule.

Size Number Non-Iso.
4 15 2
5 102 7
6 144 10
7 264 13
8 507 25
9 852 38
10 936 47
11 1152 49
12 1089 49
13 732 31
14 504 22
15 192 8
16 72 5

Table 1: Voting Rules on 4 Candidates - 8 Condorcet Loser Tournaments

d a b c
d

b a c

a

c a b b d a c

Figure 6: Size 16 Voting Tree

All Tournaments with a Condorcet Loser plus 2. All tournaments on four
candidates without a Condorcet winner or loser have the same structure: there
are two candidates who beat two others and two that beat one other. Associ-
ated with each tournament is another tournament that is identical except for
one reversal in the majority tournament. This is illustrated in figure 2. As
shown in section 2, just five of the sixteen paired outcomes is implementable

on this pair. Taking one such pair of tournaments together with the eight tour-
naments with a Condorcet loser gives 10 tournaments, over which the Pairwise
Conjecture predicts 5(38) = 32805 implementable rules. Again, the computa-
tional procedure confirms this number with a maximum tree size of 24. The
table is shown in table 2 and a sample tree of size 24 is given in figure 7.

Size Number Non-Iso.
4 15 2
5 102 7
6 169 19
7 345 45
8 693 109
9 1268 207
10 1837 391
11 2715 681
12 3335 951
13 3643 1223
14 3807 1430
15 3500 1489
16 3110 1441
17 2691 1307
18 2348 1173
19 1583 791
20 977 488
21 475 238
22 156 78
23 34 17
24 2 1

Table 2: Voting Rules on 4 Candidates - 8 Condorcet Loser Tournaments plus
2

All Voting Rules over 4 candidate, no Condorcet Loser tournaments. The
most interesting rules on four candidates involve the tournaments for which all
candidates are in the top cycle. As mentioned, the 24 such tournaments break
into 12 pairs, and there are five choices of pairs of winners for each pair. The
Pairwise Conjecture predicts that this will lead to exactly 512 = 244,140,625
implementable rules. It is possible that these rules might be enumerated to
provide further evidence for the Pairwise Conjecture.

There are some structured rules for which the tree would have independent
interest. To describe these rules, note that for every four candidate tournament
with all candidates, there are two candidates who beat two others (so have
Copeland score 2), while two candidates beat only one other (Copeland score 1).
If we let w1(T) and w2(T) be the two candidates with Copeland score 2 under T
such that w1(T)Tw2(T) and let l1(T) and l2(T) be the corresponding candidates
with Copeland score 1, l1(T)T lw(T), then if T and T ′ are decomposable pairs

a
b

c
d

b

c
a

d
a

b
d

c
d

d
a

c
b

d
b

c
c

d
a

c

F
ig

ur
e

7:
Si

ze
24

V
ot

in
g

T
re

e

(as shown in figure 2), then

• w1(T) = w1(T ′)

• w2(T) = l1(T ′)

• l1(T) = w2(T ′)

• l2(T) = l2(T ′)

Using Theorem 1, we then see the only implementable rules on T and
T ′ are (w1(T), w1(T ′)), (w2(T), l1(T ′)), (l1(T), w2(T ′)), (l2(T), l2(T ′)), and
(w2(T), w2(T ′)). So, if we look for Copeland winners, the only tiebreaking
rules possible are to choose w1 for both T and T ′ or w2 for both T and T ′: it
is not permitted to choose w1 from one and w2 for the other. Even stronger,
the only possible tie-breaking rule among Copeland losers (in the top cycle) is
l2 for both T and T ′.

This implies there are 212 = 4096 rules that choose Copeland winners, and
only one rule that chooses Copeland losers. The structure of such trees would
be of independent interest.

Initial runs on this set of tournaments are limited to trees of size 21 or less.
The table gives the number of rules and the number of Copeland rules found. At
this point, we have found 10,627,061 rules, of which 2306 choose from Copeland
winners (the rule that chooses a Copeland Loser has not yet been found). We
display a 23 node tree that chooses among Copeland winners.

a c
b c

d

c a d b a d

b
d a b c

b c
a c d b c

Figure 8: 23 Node Tree Choosing among Copeland Winners

5 Conclusions

There are some conclusions that can be drawn from these tests. First, it is
clear that any counter-example to the Pairwise Conjecture will either have to
be extremely involved or involve a larger number of candidates than we have

Size Number Copeland
4 15 3
5 102 0
6 424 0
7 1104 0
8 2377 19
9 5486 4
10 11232 18
11 21768 36
12 40420 36
13 70600 96
14 116670 60
15 187560 96
16 294510 240
17 439102 192
18 633986 138
19 895648 292
20 1231551 368
21 1655920 148
22 2188704 240
23 2829882 318

Table 3: Rules over 4 Candidates, no Condorcet Losers

considered here. Second, minimal trees implementing rules can be extraordi-
narily complex, involving the repeated comparison of candidates. Even allowing
a candidate to appear six times (on average) in a tree generates only a small
fraction of the possible rules on four candidates. It may be possible to use this
as a measure of the complexity of rule. This measure would be somewhat coun-
terintuitive, since the smallest trees generate rules that are difficult to describe,
while easy to describe rules (like choosing the l2 candidate for each tournament)
seem to generate very complex trees.

Generating all rules over 4 candidate tournaments without a Condorcet
Loser (so all candidates are in the top cycle) seems within reach and should
lead to insight into possible tie breaking rules among these tournaments.

One limit to this computational approach is the limited use of symmetry-
breaking. While we generate many rules and trees, many of them are isomor-
phic to others, and exploiting this fact may lead to significant computational
speedup. Such an improvement is needed if there is any possibility of moving
onto five candidates or more.

References

[1] J.S. Banks, “Sophisticated Voting Outcomes and Agenda Control,” Social
Choice and Welfare, 1: 295–306 (1985).

[2] P.J. Coughlan and M. Le Breton, “A Social Choice Function Imple-
mentable via Backward Induction with Values in the Ultimate Uncovered
Set,” Review of Economic Design, 4: 153–160 (1999).

[3] B. Dutta, “Covering Sets and a New Condorcet Choice Correspondence,”
Journal of Economic Theory, 44: 63–80 (1988).

[4] B. Dutta and A. Sen, “Implementing Generalized Condorcet Social Choice
Functions via Backward Induction,” Social Choice and Welfare, 10: 149–
160 (1993).

[5] R. Farquharson, Theory of Voting, Yale University Press, New Haven
(1969).

[6] M. Herrero and S. Srivastava, “Decentralization by Multistage Voting Pro-
cedures,” Journal of Economic Theory, 56: 182–201 (1992).

[7] R.D. McKelvey and R.G. Niemi, “A multistage game representation of
sophisticated voting for binary procedures,” Journal of Economic Theory,
18: 1–22 (1978).

[8] N. Miller, “A New Solution Set for Tournaments and Majority Voting: Fur-
ther Graph–Theoretical Approaches to the Theory of Voting,” American
Journal of Political Science, 24: 68–96 (1980).

[9] H. Moulin, “Prudence versus Sophistication in Voting Strategy,” Journal
of Economic Theory, 24: 498–417 (1981).

[10] H. Moulin, “Choosing from a tournament,” Social Choice and Welfare, 3:
271–291 (1986).

[11] D. Mueller, “Voting by Veto,” Journal of Public Economics, 10: 57–76
(1978).

[12] T. Schwartz, “Cyclic Tournaments and Cooperative Majority Voting: A
Solution,” Social Choice and Welfare, 7: 19–29 (1990).

[13] S. Srivastava and M.A. Trick, “Sophisticated Voting Rules: The Case of
Two Tournaments,” Social Choice and Welfare, 13: 275–289 (1996).

Michael Trick
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA, USA
Email: trick@cmu.edu

