#### The Challenge of DIMACS Challenges

Michael A. Trick Tepper School of Business Carnegie Mellon USA

DIMACS 20th Birthday November 2009

### Outline

1 Outline

- 2 The Challenges
- 3 Challenge Outline
- 4 Value of the Challenges
- 5 Challenge of the Challenges
- 6 Future and Call for Action!

" The DIMACS Implementation Challenges address questions of determining realistic algorithm performance where worst case analysis is overly pessimistic and probabilistic models are too unrealistic: experimentation can provide guides to realistic algorithm performance where analysis fails. Experimentation also brings algorithmic questions closer to the original problems that motivated theoretical work. It also tests many assumptions about implementation methods and data structures. It provides an opportunity to develop and test problem instances, instance generators, and other methods of testing and comparing performance of algorithms. And it is a step in technology transfer by providing leading edge implementations of algorithms for others to adapt. "

" The DIMACS Implementation Challenges address questions of determining realistic algorithm performance where worst case analysis is overly pessimistic and probabilistic models are too unrealistic: experimentation can provide guides to realistic algorithm performance where analysis fails. Experimentation also brings algorithmic questions closer to the original problems that motivated theoretical work. It also tests many assumptions about implementation methods and data structures. It provides an opportunity to develop and test problem instances, instance generators, and other methods of testing and comparing performance of algorithms. And it is a step in technology transfer by providing leading edge implementations of algorithms for others to adapt. "

In short, a Challenge is a challenge to see how well our theory works computationally.





It is Not a Race!



It is Not a Race! (Well, maybe a little.)

# The Nine Challenges

| No. | Name                    | Year | Volume | Organizers           |
|-----|-------------------------|------|--------|----------------------|
| 1   | Network Flows and       | 1991 | 1993   | Johnson and C. Mc-   |
|     | Matching                |      |        | Geoch                |
| 2   | NP Hard Problems        | 1993 | 1996   | Trick                |
| 3   | Parallel Computation    | 1994 | 1997   | Bhatt                |
| 4   | Computational Biol-     | 1995 |        | Vingron              |
|     | ogy                     |      |        |                      |
| 5   | Priority Queues, Dic-   | 1996 | 2002   | C. McGeoch           |
|     | tionaries, and Multidi- |      |        |                      |
|     | mensional Point Sets    |      |        |                      |
| 6   | Near Neighbor           | 1998 | 2002   | Goldwasser           |
|     | Searches                |      |        |                      |
| 7   | Semidefinite Opti-      | 2000 |        | Pataki               |
|     | mization                |      |        |                      |
| 8   | Traveling Salesman      | 2001 |        | Johnson, L. McGeoch, |
|     | Problem                 |      |        | Glover, Rego         |
| 9   | Shortest Path           | 2006 | 2009   | Demetrescu, Gold-    |
|     | -                       |      |        | berg, and Johnson    |
|     |                         |      |        | 0,                   |

Get a Committee (and a Coordinator)

Get a Committee (and a Coordinator)

Problem Definition

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization
- Instance Library

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization
- Instance Library
- Solution Verification code

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization
- Instance Library
- Solution Verification code
- Workshop

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization
- Instance Library
- Solution Verification code
- Workshop
- Conference Volume

• We learn about algorithms: Tabu Search doesn't compete with simulated annealing for clique and coloring.

• We learn about algorithms: Tabu Search doesn't compete with simulated annealing for clique and coloring.

- We learn about algorithms: *Tabu Search doesn't compete with simulated annealing for clique and coloring.*
- We learn about instances: All practical graph coloring instances are easy: they have a large, obvious clique!

- We learn about algorithms: *Tabu Search doesn't compete with simulated annealing for clique and coloring.*
- We learn about instances: All practical graph coloring instances are easy: they have a large, obvious clique!

- We learn about algorithms: *Tabu Search doesn't compete with simulated annealing for clique and coloring.*
- We learn about instances: All practical graph coloring instances are easy: they have a large, obvious clique!
- We get conjectures about random instances: All random satisfiability instances are easy, except for a very narrow range of parameters

• We get a file format. The Famous DIMACS Network Format

• We get a file format. The Famous DIMACS Network Format

- We get a file format. The Famous DIMACS Network Format
- We get a library of instances.

- We get a file format. The Famous DIMACS Network Format
- We get a library of instances.

- We get a file format. The Famous DIMACS Network Format
- We get a library of instances.
- We get useable, distributable code. benchmark graph coloring code continues to live on

- We get a file format. The Famous DIMACS Network Format
- We get a library of instances.
- We get useable, distributable code. benchmark graph coloring code continues to live on

- We get a file format. The Famous DIMACS Network Format
- We get a library of instances.
- We get useable, distributable code. benchmark graph coloring code continues to live on
- We get a literature review.

# Snapshot of Where We Are

| DSJC125.5 | 125 | 3891  | 17 | 12 |          |
|-----------|-----|-------|----|----|----------|
|           |     |       | 18 |    | CuLu96   |
|           |     |       | 20 |    | GIPaRy96 |
|           |     |       | 17 |    | LeCo96   |
|           |     |       | 20 | 12 | MeZa08   |
|           |     |       | 19 |    | DuRe08   |
| DSJC125.9 | 125 | 6961  | 45 | 42 |          |
|           |     |       | 47 | 42 | MeZa08   |
|           |     |       | 45 |    | DuRe08   |
| DSJC250.1 | 250 | 3218  | 9  | 5  |          |
|           |     |       | 9  | 5  | MeZa08   |
|           |     |       | 10 |    | DuRe08   |
| DSJC250.5 | 250 | 15668 | 29 | 14 |          |
|           |     |       | 32 |    | CuLu96   |
|           |     |       | 35 |    | GIPaRy96 |
|           |     |       | 29 |    | LeCo96   |
|           |     | 2020  | 36 | 14 | MeZa08   |

### Snapshot of Where We Are

| DSJC125.5 | 125  | 3891    | 17 | 12 |          |
|-----------|------|---------|----|----|----------|
|           | 1222 |         | 18 |    | CuLu96   |
|           |      |         | 20 |    | GIPaRy96 |
|           |      |         | 17 |    | LeCo96   |
|           |      |         | 20 | 12 | MeZa08   |
|           |      |         | 19 |    | DuRe08   |
| DSJC125.9 | 125  | 6961    | 45 | 42 |          |
|           |      |         | 47 | 42 | MeZa08   |
|           |      |         | 45 |    | DuRe08   |
| DSJC250.1 | 250  | 3218    | 9  | 5  |          |
|           |      |         | 9  | 5  | MeZa08   |
|           |      |         | 10 |    | DuRe08   |
| DSJC250.5 | 250  | 15668   | 29 | 14 |          |
|           |      |         | 32 |    | CuLu96   |
|           | 1000 |         | 35 |    | GIPaRy96 |
|           | 2002 | <u></u> | 29 |    | LeCo96   |
|           |      |         | 36 | 14 | MeZa08   |

There has been little improvement in solving random graph coloring instances in the last 15 years



How to measure? Workshops have always attracted reasonable numbers.



How to measure? Workshops have always attracted reasonable numbers.

File formats and instances are useful 15 years later.

#### Important?

How to measure? Workshops have always attracted reasonable numbers.

File formats and instances are useful 15 years later.

Can form the basis for continuing activities: Johnson, Mehrotra and I continue to encourage work on graph coloring.

## Relavant to the Literature

## Relavant to the Literature

Conference volumes are well cited. Google scholar count for the 2nd computational challenge: 546

### Relavant to the Literature

Conference volumes are well cited. Google scholar count for the 2nd computational challenge: 546 (easily Trick's best, even hits the top 10 for David Johnson)

# Individual Papers Are Well Cited

| Cites        | Per year | Rank | Authors                | Title                                    | Year | Publication                                           |  |
|--------------|----------|------|------------------------|------------------------------------------|------|-------------------------------------------------------|--|
| <b>1</b> 420 | 30.00    | 182  | B Selman, H Kautz,     | Local search strategies for satisfiabili | 1996 | DIMACS Series in Discrete Mathematics and             |  |
| 274          | 14.42    | 187  | P Godefroid            | Using partial orders to improve auto     | 1991 | '90: proceedings of a DIMACS workshop, June 18-21,    |  |
| 255          | 19.62    | 188  | J Gu, PW Purdom, J     | Algorithms for the satisfiability (SAT)  | 1997 | DIMACS Series in Discrete Mathematics and             |  |
| 239          | 15.93    | 199  | A Jepson, M black      | MIXTURE models for optical now comp      | 1992 | Partitioning Data Sets: DIMACS Workshop, April 19-21  |  |
| 210          | 11.05    | 193  | RJ Lipton              | New directions in testing                | 1991 | : proceedings of a DIMACS Workshop, October 4-6,      |  |
| <b>V</b> 188 | 14.46    | 207  | MY Vardi               | Why is modal logic so robustly decid     | 1997 | DIMACS Series in Discrete Mathematics and             |  |
| V 185        | 11.56    | 208  | M Halle, W Idsardi     | General properties of stress and met     | 1994 | Language Computations: DIMACS Workshop on Human       |  |
| 165          | 15.00    | 209  | E Winfree, X Yang,     | Universal computation via self-asse      | 1999 | DNA based computers II: DIMACS workshop, June 10      |  |
| 161          | 10.06    | 210  | YLIPM PARDALOS,        | A greedy randomized adaptive searc       | 1994 | and related problems: DIMACS Workshop, May 20-21,     |  |
| 159          | 9.35     | 68   | O Dubois, P Andre,     | Sat versus unsat                         | 1993 | Second DIMACS Implementation Challenge                |  |
| 124          | 9.54     | 242  | W Marrero, EM Clar     | Model checking for security protocols    | 1997 | DIMACS Workshop on Design and Formal Verification of  |  |
| 123          | 7.24     | 244  | N Alon, Y Roichman     | Random Cayley graphs and expanders       | 1993 | graphs: proceedings of a DIMACS workshop, May 11      |  |
| 123          | 11.18    | 243  | RG Downey, MR Fel      | Parameterized complexity: A framew       | 1999 | from DIMACS and DIMATIA to the future: DIMATIA-DIMACS |  |
| <b>V</b> 118 | 9.08     | 245  | D Luckham              | Rapide: A language and toolset for s     | 1997 | methods in verification: DIMACS workshop July 24-26,  |  |
| 103          | 7.36     | 246  | A Van Gelder, YK Tsuji | Satisfiability testing with more reaso   | 1996 | : Second DIMACS Implementation Challenge., DIMACS     |  |
| 97           | 8.08     | 73   | E Winfree              | Simulations of computing by self-ass     | 1998 | DIMACS: DNA-Based Computers                           |  |
| 92           | 13.14    | 247  | D Bryant               | A classification of consensus method     | 2003 | October 25-26, 2000 and October 2-5, 2001, DIMACS     |  |
| 86           | 5.38     | 248  | WP ADAMS, TA JO        | Improved linear programming-based        | 1994 | and related problems: DIMACS Workshop, May 20-21,     |  |
| 84           | 6.00     | 249  | C Fleurent, JA Ferland | Object-oriented implementation of h      | 1996 | Cliques, Coloring, and Satisfiability: Second DIMACS  |  |
| 83           | 0.00     | 250  | S Poljak, Z Tuza       | Maximum cuts and large bipartite su      |      | Combinatorial Optimization. Papers from the DIMACS    |  |

They take time, energy, commitment, and involve risk.

They take time, energy, commitment, and involve risk.

Low hanging fruit is taken

They take time, energy, commitment, and involve risk.

Low hanging fruit is taken ... Maybe

They take time, energy, commitment, and involve risk.

Low hanging fruit is taken ... Maybe

More subgroups (satisfiability now has its own conferences)

## But it is easier now!

## But it is easier now!

Initial Challenges were done pre-Internet

## But it is easier now!

Initial Challenges were done pre-Internet From the 2nd Challenge Call for Papers: Initial Challenges were done pre-Internet From the 2nd Challenge Call for Papers:

HOW TO PARTICIPATE. For more information about participating in the Implementation Challenge, send a request for the document "General Information" (available September 15, 1992) to challenge@dimacs.rutgers.edu. Request either LaTeX format (sent through email) or hard copy (sent through U. S. Mail), and include your return address as appropriate. Challenge materials will also be available via anonymous FTP from DIMACS, and we expect most communication with respect to the Challenge to take place over the Internet.

Blog to keep participants up to date

Blog to keep participants up to date

- Blog to keep participants up to date
- Wiki for creating literature review

- Blog to keep participants up to date
- Wiki for creating literature review

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans
- Specialized systems to keep track of and verify (!) results

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans
- Specialized systems to keep track of and verify (!) results

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans
- Specialized systems to keep track of and verify (!) results
- A more distributed coordinating team

### **ROIS: Registry for Optimization Instances and Solutions**

#### ROIS HOME

#### Instances

Graphs Display Sources Display Graphs Distances Display Sources Display Distance Matrices

#### Benchmarks/ Solutions

Coloring Display Solutions

#### Instances

- Undirected graphs (clique, coloring)
- Distance matrices (traveling tournament problem)

### **Benchmarks and Solutions**

- Maximum Clique
- Graph Coloring
- Traveling Tournament Problem

Contact: Michael Trick trick at cmu.edu

Please note: Extremely preliminary!

## ROIS: Registy for Optimization Instances and Solutions

### **ROIS: Registry for Optimization Instances and Solutions**

#### **ROIS HOME**

#### Instances

Graphs Display Sources Display Graphs Distances Display Sources Display Distance Matrices

#### Benchmarks/ Solutions

Coloring Display Solutions

### **Display Coloring Solutions**

| Name           | Nodes             | Edges | UB | LB | Ref    |
|----------------|-------------------|-------|----|----|--------|
| 1-FullIns 3    | 30                | 100   | 4  | 4  |        |
|                |                   |       | 4  | 4  | MeZa08 |
| 2222           |                   |       | 4  |    | DuRe08 |
| 1-FullIns 4    | 93                | 593   | 5  | 4  |        |
|                |                   |       | 5  | 4  | MeZa08 |
|                |                   |       | 5  |    | DuRe08 |
| 1-FullIns 5    | 282               | 3247  | 6  | 4  |        |
| <u></u>        |                   |       | 6  | 4  | MeZa08 |
|                |                   |       | 6  |    | DuRe08 |
| 1-Insertions 4 | 67                | 232   | 5  | 3  |        |
|                |                   |       | 5  | 3  | MeZa08 |
|                |                   |       | 5  |    | DuRe08 |
| 1-Insertions 5 | 202               | 1227  | 6  | 3  |        |
|                | Lange Contraction |       | 6  | 3  | Me7a08 |

# **ROIS:** Registy for Optimization Instances and Solutions

### ROIS: Registry for Optimization Instances and Solutions

#### **ROIS HOME**

### Add a Solution

#### Instances

Graphs Display Sources **Display Graphs** Distances **Display Sources Display Distance** Matrices

Benchmarks/ Solutions

| Graph Name:                     | DSJC125.1     | -    |         |
|---------------------------------|---------------|------|---------|
| Reference                       | 23:GIPaRy96 - |      |         |
| Upper Bound (Feasible solution) |               |      |         |
| Lower Bound                     |               |      |         |
| Choose File (optional)          |               |      | Browse_ |
|                                 | Add Solution  | Rese |         |

# ROIS: Registy for Optimization Instances and Solutions

### **ROIS: Registry for Optimization Instances and Solutions**

#### ROIS HOME

### Add a Solution

#### Instances

Graphs Display S Display G Distances Display S Display D Matrices

|                 | Graph Name:                     | DSJC125.1 -       |         |
|-----------------|---------------------------------|-------------------|---------|
|                 | Reference                       | 23:GIPaRy96 🔻     |         |
| ources<br>raphs | Upper Bound (Feasible solution) |                   |         |
|                 | Lower Bound                     |                   |         |
| ources          | Choose File (optional)          |                   | Browse_ |
| istance         |                                 | Add Solution Rese | ət      |

Benchmarks/ Solutions

Bottom line: a lot of the work can be automated!

# Primary Reason for More Challenges

Our work is not done.

## Primary Reason for More Challenges

Our work is not done.

Our primary goal: to define how computational work should be done, reported, and evaluated.

## Primary Reason for More Challenges

Our work is not done.

Our primary goal: to define how computational work should be done, reported, and evaluated.

Still a huge amount to do.

## John Hooker on Computational Experiments

Typically the investigator has a bright idea for a new algorithm and wants to show that it works better, in some sense, than known algorithms. This requires computational test, perhaps on a standard set of benchmark problems. If the new algorithm wins, the work is submitted for publication. Otherwise it is written off as a failure. In short, the whole affair is organized around an algorithmic race whose outcome determines the fame and fate of the contestants. [...] The emphasis on competition is fundamentally anti-intellectual and does not build the sort of insight that in long run conduces to more effective algorithms. It tells us what algorithms are better but not why. The understanding we do accrue generally derives from initial tinkering that takes place in the design stages of the algorithm. Because only the results of the formal competition are exposed to the light of publication, the observations that are richest in information are too often conducted in an informal, uncontrolled manner."

## John Hooker on Computational Experiments

Typically the investigator has a bright idea for a new algorithm and wants to show that it works better, in some sense, than known algorithms. This requires computational test, perhaps on a standard set of benchmark problems. If the new algorithm wins, the work is submitted for publication. Otherwise it is written off as a failure. In short, the whole affair is organized around an algorithmic race whose outcome determines the fame and fate of the contestants. [...] The emphasis on competition is fundamentally anti-intellectual and does not build the sort of insight that in long run conduces to more effective algorithms. It tells us what algorithms are better but not why. The understanding we do accrue generally derives from initial tinkering that takes place in the design stages of the algorithm. Because only the results of the formal competition are exposed to the light of publication, the observations that are richest in information are too often conducted in an informal, uncontrolled manner."

## We publish the Losers!

## John Hooker on Computational Experiments

Typically the investigator has a bright idea for a new algorithm and wants to show that it works better, in some sense, than known algorithms. This requires computational test, perhaps on a standard set of benchmark problems. If the new algorithm wins, the work is submitted for publication. Otherwise it is written off as a failure. In short, the whole affair is organized around an algorithmic race whose outcome determines the fame and fate of the contestants. [...] The emphasis on competition is fundamentally anti-intellectual and does not build the sort of insight that in long run conduces to more effective algorithms. It tells us what algorithms are better but not why. The understanding we do accrue generally derives from initial tinkering that takes place in the design stages of the algorithm. Because only the results of the formal competition are exposed to the light of publication, the observations that are richest in information are too often conducted in an informal, uncontrolled manner."

We publish the Losers! (If they are interesting and instructive)

## Conclusions and Call for Action!

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

The artifacts from the past Challenges continue to be useful and valuable.

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

The artifacts from the past Challenges continue to be useful and valuable.

Technology is making Challenges easier to do all the time.

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

The artifacts from the past Challenges continue to be useful and valuable.

Technology is making Challenges easier to do all the time.

There is still much to do in defining how computational work in our field should be done, reported, and evaluated

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

The artifacts from the past Challenges continue to be useful and valuable.

Technology is making Challenges easier to do all the time.

There is still much to do in defining how computational work in our field should be done, reported, and evaluated

### WE NEED MORE CHALLENGES!

## A Final Thanks!

The Challenge series, and almost all of the Challenges, could not have taken place without one person:

## A Final Thanks!

The Challenge series, and almost all of the Challenges, could not have taken place without one person:

