
NETWORKS AND MATCHINGSMichael A. Trick

Author addresses:Graduate School of Industrial Administration, Carnegie Mellon University,Pittsburgh, PA, 15213

2

ContentsChapter I. Shortest Paths 51. Introduction 52. Label Fixing Methods 53. Label Correcting Methods 114. All Pairs Shortest Paths 125. Problems 13Chapter II. Maximum Flow 151. Introduction 152. The Maximum Flow Problem 153. Shortest Augmenting Paths 184. Layered Networks 195. Multiple Augmentations 206. The Wave Algorithm 227. Pre
ow{Push 248. Pushing Large Excesses 279. Conclusions and Further Research 28Chapter III. Minimum Cost Flow 311. Introduction 312. Canceling the Best Cycle 313. Canceling Many Cycles 333

4 CONTENTS4. Canceling a Good Cycle 345. Cost Scaling 366. Shortest Path Augmentations 417. Capacity Scaling 428. Generalized Networks 459. THE NETWORK SIMPLEX METHOD 499.1. Fundamental Algorithm 499.2. Prohibiting Cycling 529.3. Prohibiting Stalling 539.4. Other Papers 54Chapter IV. Matchings 551. Introduction 552. Bipartite Matchings 563. General Matchings 584. Cut Generation 625. Determinants and a Randomized Algorithm 656. Weighted Matching 707. Generalizations of Matchings 74Bibliography 77BIBLIOGRAPHY 77

CHAPTER IShortest Paths1. IntroductionGiven a graph where each arc has a length and two special nodes s and t, theshortest path problem is to �nd a path from s to t that has minimum total length.This problem is useful by itself in such areas as telecommunications, routing, androbot motion planning. More importantly, though, it is a fundamental buildingblock for more complicated network algorithms.We will look at three algorithms for this problem. The three have a number ofdi�ering characteristics that make each appropriate for a certain type of applica-tion. 2. Label Fixing MethodsThe �rst algorithm is due to Dijkstra, in 1959. Dijkstra's algorithm �nds theshortest path from a given source node, s, to all other nodes in the network. Thesepaths combine to form a shortest path tree rooted at the source. To get from thesource to any other node in the network, it is only necessary to use edges in thisshortest path tree.This algorithm is iterative, where during the kth step, the kth closest node tothe source is added to the shortest path tree. To help us keep track of whichnode is added, we will assign a tentative distance label D(i) to each node i inthe network. When we add a node to the shortest path tree, we will make thisdistance label permanent (for it will give the value of the shortest path from s toi), and signify that by adding the node to a set T (the nodes of the tree).Initially, we will set D(s) = 0 and D(i) = 1 (computationally, you use somelarge value). During each iterative step, we will take the node with minimumD(i)that is not in T and add it to T . We will then update the tentative distances toall nodes j adjacent to i. If we know that the distance from s to i is D(i), thenthe distance from s to j is certainly no more than D(i) + cij. If j has a tentative5

6 I. SHORTEST PATHSdistance higher than that, then we can update the tentative distance. So for everyj adjacent to i, we set D(j) = minfd(j); d(i) + cijgThis completes the iterative step. More formally, the algorithm is as follows:Algorithm 1. Dijkstra's Shortest PathShortestPath(G,s)for all i 2 VD[i] =1parent[i] = NULLD[s] = 0T = ;repeatlet i be node with minimumD[i] such that i =2 Tif D[i] =1network is not connectedT gives the reachable nodesreturnfor all j adjacent to iif D[j] > D[i] + cijD[j] = D[i] + cijparent[j] = iadd i to Tuntil T = V .returnLet's work through an example.

2. LABEL FIXING METHODS 7AO C B DE T2 5 72 414 4 3 1 7 5[0]
[100] [100]

[100] [100]
[100] [100]

After adding O.
Initial

[4]
[5][2]

[100][100]
[100][0] 571344 1 42 752 TE DBCO A

Figure I.1. Shortest path example

8 I. SHORTEST PATHS
[100][100][0] 571344 1 42 752 TE DBCO A [9][4]

[4] After adding A.
After adding B. [7]

[8][2]
[2]

[4]
[4]AO C B DE T2 5 72 414 4 3 1 7 5[0] [100]

Figure I.2. Shortest path example (cont.)

2. LABEL FIXING METHODS 9

[14]After adding E
After adding C [7]

[8][2]
[4]

[4]AO C B DE T2 5 72 414 4 3 1 7 5[0] [100]
[0] 571344 1 42 752 TE DBCO A [4]

[4]
[2] [8]

[7]Figure I.3. Shortest path example (cont.)

10 I. SHORTEST PATHS

Final Solution [13][7]
[8][2]

[4]
[4]AO C B DE T2 5 72 414 4 3 1 7 5[0]

[0] 571344 1 42 752 TE DBCO A [4]
[4]

[2] [8]
[7]After adding D. [13]

Figure I.4. Shortest path example (cont.)

3. LABEL CORRECTING METHODS 11Why does Dijkstra's algorithm work?Problem 1. Show that the node added to T in the kth iteration is the kthclosest node to s.This is a simple proof by induction.Problem 2. Show that the distances assigned to each node are correct, andhence that the algorithm is correct.Again, this is a straightforward proof by induction.Problem 3. What is the time complexity of this algorithm?Every arc is examined just twice while going through the adjacency lists. Finding thenode with minimum D[i] takes O(jV j), and must be done O(jV j) times. Therefore,the total complexity is O(jEj + jV j2) (all other operations take less time). Actually,it is possible to store the node distances in a heap. This reduces the time to O(jEj+jV j log jV j).Problem 4. What happens in this algorithm if some of the costs are negative?It fails miserably (the induction in problem 1 no longer holds).3. Label Correcting MethodsThe next algorithm uses the same essential equation as that in Dijkstra's algo-rithm, but uses it in a much less organized way. Although the resulting algorithmis less e�cient than Dijkstra's algorithm, the
exibility provided by the lack of or-ganization make it ideal for distributed computation. This algorithm also makesa less stringent assumption about the input graph.Suppose we have a set of tentative distance labels D(i) and go through thenodes in order. If we ever �nd an edge (i; j) such that D(j) > D(i) + cij, we canreduce D(j) to be D(i) + cij. If we go through all the nodes and edges without�nding such a case, then we can terminate. More formally, we get the algorithmBELLMAN{FORD.Again, we must ask ourselves two questions: why does this algorithm work andwhat is the complexity of the algorithm?Problem 1. Show that at the end of the kth iteration of the while loop, thedistance label associated with i gives the minimum length path using at most kedges.Problem 2. How many iterations through the while loop are required? Whencan this algorithm fail?

12 I. SHORTEST PATHSAlgorithm 2. BELLMAN{FORD(G,s)for all i 2 VD[i] = 1parent[i] = NULLD[s] = 0done = FALSEwhile not donedone = TRUEfor each i 2 Vfor each edge (i; j)if D[j] > D[i] + cijdone = FALSED[j] = D[i] + cijparent[j] = ireturnThere should be no need for more than jV j�1 iterations, since no patch can be longerthan that. If, however, there is a negative cost cycle in the graph, the algorithmcan \loop" though that cycle, so the algorithm will still be decreasing labels after jV jiterations. It is then that the algorithm can fail.The time complexity follows directly from this argument. The total number ofiterations is O(jV j), and every edge is used twice in each iteration. The total timeis O(jV jjEj), which is not as good as Dijkstra's algorithm. The advantages of theBellman{Ford algorithm are:(1) can handle negative costs (though not negative cycles),(2) can recognize negative cycles (if the distances change during iterations jV j),(3) easier to work into a distributed environment,4. All Pairs Shortest PathsOur �nal static algorithm does more than the previous two algorithms. BothDijkstra's and the Bellman{Ford algorithm �nd the shortest distance from a givennode to every other node. The Floyd{Warshall algorithm �nds the shortest dis-tance between every two nodes. Again, this algorithm begins with estimates ofthe distances between the nodes, in this case arranged in a matrix Dij . Initially,the estimates are the length of the edge between i and j (if no edge exists, thenthe estimate is set to 1 or some large number). Then, at iteration k, the matrixis updated to be the length of the shortest path using just nodes 0; 1; : : : ; k as

5. PROBLEMS 13intermediate nodes. If we let Dkij be the distance matrix for the kth iteration,then initially D(�1)ij = cijThe iterative step replaces this withD(k+1)ij = minfD(k)ij ;D(k)i(k+1) +D(k)(k+1)jgThis is done for k = 0; 1; : : : ; jV j � 1 to give D(jV j)ij , the �nal result. Now theminimum distance from i to j is the ijth entry of this matrix.You should interpret the right hand side as taking the minimum of going usingonly nodes 0; 1 : : : ; k and going from i to k+1 and from k+1 to j. The correctnessof this algorithm follows from this interpretation.To determine the complexity, note that a matrix with O(jV j2) entries is updatedO(jV j) times. This gives a total complexity of O(jV j3). This complexity is worsethan the other two algorithms if just one shortest path is required. It is better,however, if all pairs are required.Problem 1. How can this algorithm be implemented to �nd the shortest paths?Use a predecessor matrix, and update that matrix whenever a distance matrix entryis updated. 5. ProblemsHomework Problem 1. Show that for any graph and source node s, it ispossible to choose shortest paths from s to every other node such that the arcs inthese paths forms a tree (i.e. has no cycles ignoring directions).Homework Problem 2. One obvious approach to handling negative costs inDijkstra's algorithm is to add some large constant to the cost on each arc. Showthat this method does not work.Homework Problem 3. An acyclic graph is a graph with no directed cycles.Give an algorithm for �nding the longest path in acyclic graphs. What is thecomplexity of your algorithm?Homework Problem 4. A Euclidean graph is an undirected graph with dis-tances on the edges. The nodes can be embedded in the euclidean plane such thatthe distance on every edge equals the euclidean distance between the end points ofthe edge. (Note that the graph need not be complete.) Modify Dijkstra's algorithmfor this problem with the di�erence that the unlabeled node chosen at each iterationis the one with minimum d(i) + Euclidean{distance(i; t). We are only interestedin the distance from s to t, so we can stop as soon as t is chosen.

14 I. SHORTEST PATHS1) Give the algorithm you create and prove its correctness (you can use anyresults on the unmodi�ed Dijkstra's algorithm).2) Give an example where this algorithm is a large (more than constant time)improvement on the unmodi�ed algorithm.3) Give an example where the modi�ed algorithm is no di�erent than the un-modi�ed one. Can it be worse?

CHAPTER IIMaximum Flow1. IntroductionIn this section we examinemaximum
ow algorithms from their roots in the early1960's to current algorithms. These algorithms use a variety of techniques that willbe useful in studying more complicated problems. These include such fundamentalconcepts as duality, augmenting paths, scaling, and amortized analysis.2. The Maximum Flow ProblemA network consists of a directed graph G with node set V and arc set A. We willassume the arcs are directed, so an arc (i; j) is said to be from i to j. Associatedwith each arc (i; j) is a capacity c(i; j). We assume all capacities are non{negative.Consider a network with two distinguished nodes: s (the source) and t (thesink). A feasible
ow in the network assigns a value x(i; j) to each arc (i; j) suchthat � 0 � x(i; j) � c(i; j), and� for every node except s and t, the amount of
ow entering the node equalsthe
ow leaving the node.The maximum
ow problem is to �nd a feasible
ow that maximizes the sum ofthe
ows out of s.Problem 1. Formulate the maximum
ow problem as a linear program.15

16 II. MAXIMUM FLOWMany possibilities. Let the network be (V;A) and create variables fxa : a 2 Ag. Letv denote the maximum
ow. The constraints are:Xj fxa : a = (j; i)g �Xj fxa : a = (i; j)g = 0 for all i; i 6= s; i 6= tXj fxa : a = (j; s)g �Xj fxa : a = (s; j)g+ v = 0Xj fxa : a = (t; j)g �Xj fxa : s = (t; j)g � v = 00 � xa � ca for all a 2 A:The objective function is to maximize v.Problem 2. What is the dual of this linear program?Using the above formulation, create a dual variable uv for each constraint. The con-straints are: uj � ui + wa � 0 for all a = (i; j) 2 Aus � ut � 1wa � 0 for all a 2 AThe objective is to minimize Pa cawa.Problem 3. What are the complementary slackness conditions?The straightforward interpretation is thatxa > 0) uj � ui + wa = 0wa > 0) xa = caA more complicated answer examines the possibilities for ui and uj:ui < uj. xij must be equal to 0.ui = uj. There may or may not be positive
ow on (i; j).ui > uj. xij = cij.We shall assume for notational convenience that for every arc (i; j) there isanother arc (j; i) (possibly with capacity 0). We will also assume there is at mostone arc from i to j for every i and j.Let us start with an easier problem: the non{zero
ow problem. Given a networkwith capacities, �nd a feasible
ow that sends at least one unit of
ow from s to t.

2. THE MAXIMUM FLOW PROBLEM 17Problem 4. Give an algorithm for this problem.Many algorithms work. The idea is to �nd a path from s to t such that every arc hascapacity greater than 0. Then a
ow can be sent from s to t equal to the minimumcapacity of the arcs on the path found. Some possibilites: depth{�rst search (goodfor following counterexamples), breadth �rst search (leads to well{known Edmonds{Karp), maximum augmentation (leads to Edmonds{Karp fat{path algorithm | goodhomework problem, see [57]).We will call a path found by this algorithm an augmenting path.Suppose we have a
ow f through the network and that the
ow on the arc from4 to 5 is 10. Suppose the c(4; 5) = 15 and f(5; 4) = c(5; 4) = 0. Then, to changethe
ow, we could send either up to 5 more units of
ow from 4 to 5 or remove upto 10 units, which is equivalent to sending 10 units from 5 to 4. In other words,we could replace the current arcs 4,5 and 5,4 with new arcs having capacity 5 and10 respectively. If we do this for every arc in the network, we create the auxilliarynetwork. Suppose we �nd a
ow f� for this network. The
ow f + f� is thenfeasible for the original problem.This gives us our �rst algorithm for the maximum
ow problem:MAX-FLOW(N ,f) N : capacitated network, f the maximum
owf = 0REPEATCreate auxilliary network N 0 with respect to fNONZERO-FLOW(N 0; f 0)f = f + f 0WHILE (f 0 6= 0)FINISHEDProblem 5. Can this algorithm go on forever?No, assuming all capacities are �nite. The algorithm augments by at least one unitof
ow each iteration.A more di�cult problem is to show that this algorithm terminates with a max-imum
ow to the original problem. Let S be a subset of V with s 2 S and t =2 S.Let T = V � S (so t 2 T). Finally, let C(S; T) be the arcs (i; j) with i 2 S andj 2 T . C(S; T) is called a cut. The capacity of a cut is the sum of the capacitiesof the arcs in the cut. Clearly, if the capacity of some cut is k then there is no
ow from s to t with value more than k.Problem 6. Prove the above statement using duality.

18 II. MAXIMUM FLOWLet ui = 1; i 2 S; ui = 0; i 2 T ; wij = 1; i 2 S; j 2 T ; and wij = 0 otherwise.Examining the constraints in Problem 2 shows that this is a dual feasible solutionwith objective Pfcijwij : (i; j) 2 C(S; T)g. By weak duality, this implies that themaximum
ow from s to t can be no more than that value.Problem 7. Suppose we �nd a cut of capacity k and a
ow of value k. Whatcould we conclude?We have an optimal
ow.Now, for some cut C(S; T) de�ne the
ow across a cut to be the sum of the
ows on the arcs in C(S; T) minus the
ow on arcs from T to S.Problem 8. Show that the
ow across any cut equals the value of the
ow(that is, the amount of
ow leaving s).One method is by induction on the set of nodes in S. By de�nition this is true forS = fsg. Suppose it is true for all subsets of S containing s. To show for S, take anynode i 2 S; i 6= s. By conservation of
ow at i, it is easy to show that the
ow acrossthe cut for S equals the
ow across the cut for S� i. The result follows by induction.Problem 9. How can the NONZERO-FLOW algorithm fail?The only way it can fail is to have no path from s to t in the auxilliary graph.Problem 10. Show that our MAX-FLOW algorithm terminates in a maximum
ow.Let S be the nodes reachable from s in the auxilliary graph and T = V � S. Thenevery edge in C(S; T) has capacity 0. So every edge (i; j); i 2 S; j 2 T has
ow at itscapacity and every edge (i; j); i 2 T; j 2 S has zero
ow. Therefore the
ow acrossthe cut equals the capacity of the cut. By Problem 7, this gives an optimal
ow.Problem 11. How long does MAX-FLOW take (how many calls to NON-ZERO-FLOW)? How can you improve this algorithm?Let v0 the the value of the maximum
ow. This algorithm can take up to v0 calls toNONZERO{FLOW. This bound is tight as can be seen:3. Shortest Augmenting PathsThe main idea of the algorithm of Edmonds and Karp is to augment alongshortest augmenting paths. We now will work out why this algorithm worksquickly.With respect to the current
ow f , let �(i) be equal to the length of the shortestaugmenting path from s to i, and � (i) be the length of the shortest augmentingpath from i to t.

4. LAYERED NETWORKS 19Problem 1. Show that if augmentations are done along shortest augmentingpaths, then �(i) and � (i) are nondecreasing for all i.We will show for �, the case for � is similar. Let � and �0 be the values before andafter the augmenation respectively, and assume �(i) > �0(i) and i has the minimumvalue for �0 among all such. Let (j; i) be the last arc on the augmenting path thatgives �0(i). By such a choice, �0(j) + 1 = �0(i) and �(j) + 1 � �0(i).Claim that (i; j) was on the augmenting path. If not then �(i) � �(j)+ 1 (since (j; i)capacity greater than 0). Combined with the above, this gives �(i) � �(j) + 1 � �0(i)which is a contradiction.So (i; j) was on the augmenting path so �(j) = �(i) + 1. Substituting above, we get�(i) + 2 � �0(i), contradiction.De�ne phase k to be the augmentations during which �(t) = k.Problem 2. Show that during phase k at most one of (i; j) and (j; i) will beused in an augmenting path.It is straightforward to see that if both (i; j) and (j; i) appear in a phase, either a �or a � had to decrease.An arc is critical for an augmentation if it is on the augmenting path and has
ow equal to either 0 or its capacity after the augmentation.Problem 3. Show that no critical arc will appear in a later augmenting pathduring the same phase.Once an arc reaches capacity (as critical arcs do) it can not be used again until anaugmentation uses its reversal. By Problem 2, this cannot occur until the next phase.Problem 4. How many augmentations can there be in a phase? How manyphases? How much time per augmentation?Let jV j = n and jAj = m. Each augmentation makes at least one arc critical, so therecan be no more than A augmentations in a phase. There are at most V phases, andbreadth �rst search requires O(A) time, so the overall complexity is O(A2V).4. Layered NetworksAt the beginning of phase k, we can create a layered network by placing in layerl all nodes i with �(i) = l. An arc (i; j) is placed in the network if and only if�(j) = �(i) + 1.Problem 1. Show that �nding a maximum
ow in this layered network isequivalent to doing all the augmentations in phase k.

20 II. MAXIMUM FLOWSince clearly all the augmenting paths in the layered network are of length k, andall augmenting paths in the layered network correspond to augmenting paths in theoriginal graph, we need only show that there is no augmenting path in the originalgraph of length k that does not correspond to an augmenting path in the layered graph.Suppose there is such a path P with edge (i; j) not in the layered graph. Then at thebeginning of the phase �(j) 6= �(i) + 1. But now, with �0, �0(j) = �0(i) + 1. Also,�(i) + � (i) = k and �0(i) + � 0(j) = k. If neither � or � decreased then �(i) = �0(i).But this also holds true for �(j), which is a contradiction. Hence no P exists.The next three algorithms we will discuss (Dinits, MPM, and Tarjan) are allalternative ways of �nding a maximum
ow in a layered network. Dinits' is themost straightforward.Problem 2. Apply depth �rst search to the layered network. What happensafter k arcs are examined (where k is the phase)?After k arcs, we have either reached t (in which case we augment), or we are forced toback up. In the former case, one arc becomes critical, and we can remove it from thenetwork. In the latter case, if we back up from node i we know that no augmentingpath can go through i, so we can remove it from the graph.Problem 3. What is the time complexity of Dinits' algorithm?In iteration k, there can be at most V +A = O(A) examinations of at most k arcs. Thetime for phase k is therefore O(kA). There are V phases, so the overall complexityis O(V 2A).Note that this complexity is better than that for Edmonds and Karp, thoughDinits was two years earlier. Edmonds and Karp �rst presented their work in1969. 5. Multiple AugmentationsRead [42].The next two algorithms optimize
ow in a layered network. The importantproperties of this network are that it is acyclic and every node has a layer andevery arc is from one layer to the next.For a node i in the layered network with nodes V and arcs A, each with acapacity c(i; j) and a current
ow f(i; j), de�ne its throughput �(i) to be theminimum of the following two numbers:Xfc(j; i)� f(j; i) : (j; i) 2 Ag

5. MULTIPLE AUGMENTATIONS 21Xfc(i; j)� f(i; j) : (i; j) 2 AgFor s ignore the �rst number, for t ignore the second.Let the node with minimum throughput be the reference node.Problem 1. Let r be the reference node in a layered network. Show that �(r)units of
ow can be sent from s to r and the same from r to t.To move the
ow from r to t, simply assign
ows to the arcs out of r in any order,�lling up one arc before assigning
ow to the next. By the de�nition of throughput, all
ow will be assigned before the arc capacities are exhausted. Now repeat this with thenodes in the next layer. Because the amount of
ow at each layer equals the minimumthroughput, at no time will a node receive more
ow than it is able to pass on to thenext layer, so all the
ow will eventually end up at t. The argument for s to r is thesame, except the arcs are treated as though reversed.Problem 2. Show that after moving the
ow in such a manner, node r can bedeleted from the layered network.After the augmentation, either all the arcs entering r or all the arcs leaving r aresaturated (at their capacities). Since this is a layered network, acyclicity implies thatthey will stay saturated. Therefore, no augmenting path can go through r, so r can beeliminated.During such an augmentation, some arcs will be assigned
ow equal to theircapacity. Such an arc is saturated and the corresponding movement of
ow iscalled a saturating push of
ow. An arc assigned
ow not equal to its capacity isunsaturated and the movement of
ow is an unsaturating push.Problem 3. How many unsaturating pushes are there in your solution toProblem 1?Because we �ll up one arc completely before beginning to �ll up the next, there is atmost one unsaturating push at each node each iteration.Now consider the following algorithm for a layered network: determine the nodethroughputs, �nd the node with minimum throughput, augment
ow through thatnode, delete the node from the graph, update the throughputs, repeat until thegraph has no nodes (or all throughputs are 0).Problem 4. Why is this algorithm correct? What is the complexity of thisalgorithm?

22 II. MAXIMUM FLOWBy problem 1, we can correctly push
ow through the network. By problem 2, wecan correctly delete the node from the network after the
ow update. Repeating theprocess, after at most jV j iterations, there are no nodes in the network.To get the complexity, note that there are at most jV j2 nonsaturating pushes and jAjsaturating pushes (because once an arc gets saturated, it remains that way. Therefore,the time is O(jV j2 + jEj) which is O(jV j2). This gives an O(jV j3) algorithm for themaximum
ow problem (why?).6. The Wave AlgorithmRead [58].All the previous algorithms had the following property: at every step of thealgorithm, the
ow into a vertex equals the
ow out of the vertex. Karzanov(1974) introduced the concept of pre
ows that relaxes this property. De�ne theexcess at a node i relative to a set of arc values f to be:Xff(j; i) : (j; i) 2 Ag �Xff(i; j) : (i; j) 2 AgA
ow (as we have de�ned it) has zero excess at every node except s and t. Apre
ow has non{negative excess at every node except s and t. A node with zeroexcess is said to be balanced; a node with positive excess is unbalanced. Finally,we say a node is blocked with respect to a pre
ow if there is no augmenting pathfrom it to t; otherwise it is unblocked.Karzanov's algorithm (as modi�ed by Tarjan) begins by making s blocked andthen attempts to make all the nodes balanced. Consider the excess at an unbal-anced vertex. If the vertex is not blocked, then the
ow still has a possibility toget to t, so it should be sent forward (to the next layer). If the vertex is blocked,it has no such chance by going forwards, so it should be sent back towards s bysending it backwards (to the previous layer).To send excess forward from i we repeat the following step until its excess is 0(i is balanced) or there is no unsaturated edge (i; j) with j unblocked:Forward Flow. Let (i; j) be an unsaturated edge with j unblocked. Increasef(i; j) by minfc(i; j)� f(i; j); excess of ig.To send excess back from i we repeat the following step until its excess is zero:Backward Flow. Let (j; i) be an edge of positive
ow. Decrease f(j; i) byminff(j; i); excess of ig.Problem 1. Why must repeated application of Backward Flow terminate withexcess of zero?We can set the incoming
ow to zero, which clearly has to make the excess nonpositive.

6. THE WAVE ALGORITHM 23The maximum
ow in a layered network algorithm is now the following:Step 0. (Initialize) For every edge (s; j) set f(s; j) = c(s; j). Set all other
owsto zero. s is now blocked.Step 1. (Send
ow forward) Let i be an unblocked, unbalanced node of minimumlayer number (s has layer 0, those next to s layer 1 and so on) other than t. Ifno such node exists, go to Step 2. Attempt to balance the node by sending
owforward. If i is still unbalanced, mark i blocked. Go to Step 1.Step 2. (Send
ow backwards) Let i be a blocked, unbalanced node of maximumlayer other than s or t. If no such node exists, Go to Step 3. Attempt to balancethe
ow by sending
ow backwards. Go to Step 2.Step 3. (Terminate?) If there are no unbalanced nodes, halt. Otherwise go toStep 1.Problem 2. Which nodes are unbalanced at the end of when Step 2 is calledfrom Step 1? How many iterations of Steps 1 and 2 (that is, how many Step 3)are required?Only nodes that were marked blocked in the previous applications of Step 1 are nowunbalanced. Therefore, there are at most jV j iterations of Step 1 and Step 2 pairs(since each one makes at least one vertex blocked).Problem 3. How many times will an attempt be made to balance a node(either by sending
ow forwards or backwards)?Once we balance a blocked node, we no longer need to examine that node. We balancean unbalanced node at most once each iteration, therefore the number of balancingtries for a node is O(jV j), for a total of O(jV j2) balancings.Problem 4. Someone claims that he has a problem where �rst the
ow on anedge increases, then it decreases, then it increases again. Do you believe him?No, this cannot happen. An arc (i; j) has
ow increased only if j is unblocked anddecreased only if j is blocked. Since a blocked nodes remains that way, the
ow �rstincreases then decreases on an edges (hence the \wave").Problem 5. How many increasing and decreasing steps are there?Each Forward Flow either saturates the edge or terminates an attempt to balance anode. Similarly each Backward Flow step either puts the
ow to zero or terminates abalance attempt. Therefore there are at most O(jV j2 + 2jAj) applications of Forwardand Backward Flow.Problem 6. What is the complexity of this algorithm?Each call to Forward or Backward Flow takes constant time so the overall complexityis O(jV j2), giving another O(jV j3) algorithm.

24 II. MAXIMUM FLOWProblem 7. Compare the algorithms we have covered so far (Ford{Fulkerson,Edmonds{Karp, Dinits, MPM, Tarjan). What are the advantages and disadvan-tages of each? Which do you think you would work best in practice? How couldyou test your guesses?There are many ways to answer this, examining such things as worst{case time com-plexity, data structures required, advantages and disadvantages for sparse and densegraphs, etc. The only way to tell for sure is to do some sort of computational ex-periment, but even then the problems solved probably have little to do with real{worldproblems. 7. Pre
ow{PushRead [28].The past three algorithms �nd a maximum
ow in a layered network. Goldbergand Tarjan ask the question \Is the layered network necessary?" Their insightwas to avoid the layered network by working with approximate distance labels.These labels are combined with the pre
ows of Karzanov to form a very simpleand appealing algorithm.A distance labeling d is a nonnegative integer valued function on the verticessuch that d(t) = 0, d(i) > 0 for all i 2 V , and d(j) � d(i)� 1 for every edge (i; j)in the auxilliary network with positive capacity.Problem 1. Show that � gives a valid distance labelling. Give another labellingthat is valid for any
ow.Clearly, � (t) = 0 and � (i) > 0, for i 6= t. Consider an edge (i; j) with positive capacityin the auxilliary network. Since i can reach t through j, the shortest path from i isno more than 1 more than the shortest path from j, so d(i) � d(j) + 1 as needed.Another valid labelling is to set d(t) = 0 and d(i) = 1 for i 6= t.The algorithm of Goldberg and Tarjan has two phases: in the �rst phase
owis sent from s as far forward as possible (ideally as far as t). In the second, excess
ow is sent back to s. Ahuja and Orlin (1987) modi�ed the algorithm slightly,giving a one{phase approach. It is their method we adopt here.An initial pre
ow can be created by saturating each arc out of s.Problem 2. Given that initial
ow, show that setting d(t) = 0, d(s) = V andd(i) = 1; i 6= s; t is a valid distance label.Again clearly, d(t) = 0 and d(i) > 0; i 6= t. Consider an edge (i; j) with positivecapacity in the auxilliary network. Since all edges out of s were saturated, i 6= s, sod(i) � 1, which means the restriction on d(j) is d(j) � 0 which is clearly so.

7. PREFLOW{PUSH 25A node i is active if it has positive excess and i 6= s; t. The simplest versionof the algorithm is to repeat the following in any order until there are no activevertices:Push. Select any active vertex i. Select any edge (i; j) with positive capacityc(i; j) in the auxilliary network and d(i) = d(j) + 1 Send min(c(i; j);excess(i))units of
ow from i to j.Relabel. For some active vertex i, replace d(i) by minfd(j) + 1(i; j) is an edgewith positive capacity in the auxilliary graphg.Problem 3. Show that d is always a valid labelling, and that for any i, d(i) isnondecreasing.Since the initial solution is valid, consider the push or relabel step which made thelabelling invalid. A push on (i; j) may add the edge (j; i) to the auxilliary network, sowe need d(j) � d(i) + 1. But since we pushed on (i; j) we know that d(j) = d(i) + 1.A push on (i; j) may also delete (i; j) from the auxilliary network, which does nota�ect the validity conditions. Finally, the relabel step explicitly ensures the validityconditions.If d(i) were to decrease during a relabelling, there would be an edge (i; j) with positivecapacity in the auxilliary network such that before the relabelling d(i) < d(j) + 1,contrary to the validity conditions.Problem 4. Show that every if i has positive excess then there is a directedpath from i to s in the auxilliary graph. How big can d(i) get?Consider any s{t cut. It is simple to prove by induction that the
ow across thecut equals the
ow into t plus the sum of the excesses of nodes on the t side of thecut. For any node i with positive excess, claim there is an s{i path consisting of arcswith positive
ow. If not, then there is an s{i cut where all the forward edges havezero
ow (by the max{
ow/min{cut theorem). But this contradict the �rst statement(since the sum of the excess is strictly positive). Therefore, there is an s{i path of
ows, so its reversal has positive capacity in the auxilliary graph.Since there is a path of length at most V � 1 from i to s and an arc is relabelled onlyif it has positive excess, d(i) � d(s) + V � 1 = 2V � 1.Problem 5. How many saturating pushes are there?If an arc (i; j) becomes saturated, then it remains so until d(j) increases by at least 2.Thus, an arc can be saturated at most V times, for a total of at most V A saturatingpushes.Problem 6. How many nonsaturating pushes. Hint: Consider Pfd(i)i isactiveg. How does it increase? How does it decrease? Is it ever negative?

26 II. MAXIMUM FLOWConsider � = Pfd(i)i is activeg. Each nonsaturating push causes � to decrease byat least one. A saturating push increases � by at most 2V . A relabelling increases itby the increase in the label so there is an O(V 2) increase due to relabellings. Since �is never negative, the maximum number of times � can be decreased is equal to theinitial value plus the total increases. This is O(V 2A) by problem 5.Problem 7. Show that this algorithm terminates in a maximum
ow, providedeach relabel step changes a label.If each relabelling changes a label, the algorithm must terminate in a
ow (for therecan be no more active vertices). Since d is valid and d(s) = V , there can be noaugmenting path from s to t, which implies optimality.Problem 8. What is the complexity of this algorithm, provided each relabelstep changes a label?If each relabel changes a label, the dominating term is the number of non{saturatingpushes, which is O(V 2A).To show a polynomial bound, then, we need only ensure that every relabel stepchanges a label. One way is to place an order on the edges incident to each node.Each node has a current arc, which is the current candidate for pushing
ow outon. We can replace the Push and Relabel routines with one Push/Relabel routine:Push/Relabel Select any active vertex i and let (i; j) be its current arc. Ifd(j) = d(i)�1 and (i; j) has positive capacity then push
ow from i to j. Otherwisereplace (i; j) by the next arc incident to i. If (i; j) is the last arc, relabel i andmake the �rst arc out of i the current arc for i.Problem 9. Show that each relabel step changes a distance label.Since a relabel is called only when there are no arcs (i; j) with d(i) = d(j) + 1, thelabel must strictly increase.The resulting algorithm is O(V 2A). To improve this to O(V 3) we must examinenodes in a certain order. This order is in queue order. The following step isrepeated until the queue Q is empty:Discharge. Select the vertex i from the front of Q and remove it. Applypush/relabel to i at least until its excess is 0 or d(i) changes. If a push from ito j causes j to get positive excess, add j to the rear of Q. If i is still active afterthe push/relabel steps, add i to the end of the queue.To analyze this algorithm (whose analysis is much like magic), de�ne a pass overthe queue as follows: the �rst pass is the discharging step applied to the nodesincident to s (which have positive excess due to our initial
ow); pass p consistsof those nodes added to the queue during pass p � 1.

8. PUSHING LARGE EXCESSES 27Problem 10. How many passes are there? Hint, consider maxfd(v)v is activeg.Suppose it stays the same or increases during a pass. What must have happened?How many times can that happen? Suppose it decreases. How many times canthat happen?Let � = maxfd(i)i is activeg. Consider what happens to � during a pass. If �remains the same, then some distance label must increase. If � increases, somedistance label increases the same amount. Therefore, the total number of passes forwhich � increases or remains the same is O(V 2). Also, since � > 0, the number ofpasses where it decreases is O(V 2), giving O(V 2) passes.Problem 11. How many non{saturating pushes are there? What is the timecomplexity of this algorithm?There is at most one nonsaturating push per node per pass. Therefore, there areO(V 3) nonsaturating pushes, leading to an O(V 3) algorithm.The overall complexity of this algorithm is O(V 3). To get the complexity downfurther, complicated data structures must be used, the so{called dynamic trees,which turn up everywhere in network algorithms (well, everywhere Tarjan is writ-ing anyway). 8. Pushing Large ExcessesRead [2].In their new paper, Ahuja and Orlin modify the order in which nodes are ex-amined in the Goldberg{Tarjan algorithm. The resulting algorithm is still verysimple, but its time bound is better than any others, as long as the capacities arenot too big (even if the capacities are very large, you can argue that this is thefastest algorithm).The essential idea is to push
ow from nodes with large excess to nodes withsmall excess, never creating too much excess at a node. Let U be the maximumcapacity of any edge. The algorithm performs dlog Ue + 1 scaling iterations. Foreach iteration, there is a limit on the maximum excess permitted, �. We willassume � is a power of two. In an iteration, every non{saturating push sends atleast �=2 units of
ow and no excess is created of size more than �. To ensurethis we will always send
ow from a node with excess at least �=2 to a node withexcess less than �=2.Using our notation for Goldberg{Tarjan, given we are in a scaling iteration with�, we choose the node with minimum distance such that the node has excess atleast �=2. We then apply Push/Relabel except that we never create excess morethan � (if we would, we stop sending
ow when the excess reaches �). If no node

28 II. MAXIMUM FLOWexists with excess at least �=2, we replace � with �=2 and begin a new scalingiteration.Problem 1. Show that our choice of node means that we always send
ow froma node with excess at least �=2 to one with excess less than �=2.If we push on (i; j) then we have ei � �=2. Since we chose i so that it had minimumdistance among all such nodes, ej < �=2.Problem 2. Show that each nonsaturating push sends at least �=2 units of
ow.There are three limitations we can reach: the arc capacity, the excess of the node wepush from, and the limitation that the excess of the node we push to is no more than�. The latter two limitations are at least �=2. A nonsaturating push doesn't reacharc capacity, so we push at least �=2 units.Problem 3. Show that there are O(V 2) nonsaturating pushes in any scalingiteration. (Hint: Examine P eidi where ei is the excess of node i). How manynonsaturating pushes are there in total? How many saturating pushes?Consider � = P eidi. Initially this is bounded by 2V 2�, for each ei � � and eachdi � 2V . When the algorithm examines node i one of two things happens:(1) The algorithm increases its distance label. The number of times this can be donefor each node is no more than 2V and each increases � by �, so the increase in �due to relabellings is bounded by 2V 2�.(2) The algorithm pushes along an arc. Each nonsaturating push decreases � by atleast �=2. Each saturating push decreases � by some amount. Therefore, the numberof nonsaturating pushes is no more than the initial value of � plus the increase in �divided by the minimum amount the push decreases �. This turns out to be 8V 2.Since there are logU scaling iterations, there are O(V 2 logU) nonsaturating pushes.There are O(V A) saturating pushes for the reasons given in Goldberg{Tarjan.In order to show that the overall algorithm takes time O(V 2 logU), it is nec-essary to give data structures that permit the �nding of the minimum distancenode with large enough capacity, and other aspects of this algorithm. This makesthe algorithm a bit nasty looking, but doesn't change the essential aspects. ReadAhuja and Orlin for further details.9. Conclusions and Further ResearchIn this tutorial, we have examined seven algorithms for the maximum
ow prob-lem: those by Ford and Fulkerson, Edmonds and Karp, Dinits, MPM, Karzanov(via Tarjan), Goldberg and Tarjan, and Ahuja and Orlin. The complexity of the

9. CONCLUSIONS AND FURTHER RESEARCH 29versions we examined ranges from O(v�) (the value of the maximum
ow) forFord{Fulkerson down to O(V 3) for MPM, Karzanov, and Goldberg{Tarjan andO(V 2 logU) for Ahuja{Orlin. In this tutorial we have omitted one very importanttopic: sophisticated data structures, such as dynamic trees (see [28]) as well as anumber of other algorithms (see [2] for references). Even at this stage, however,there are a number of intriguing research questions:Research Problem 1. Is there an O(V A) algorithm for the maximum
owproblem or can you create a nontrivial lower bound? This bound seems to be thenatural bound, but no one has found such an algorithm.Research Problem 2. Which of these algorithms works best in practice?Do some algorithms work better with some network structures than others? Isthere a hybrid algorithm that somehow identi�es and takes advantages of thesedi�erences? Are there variations on these algorithms that work especially well inpractice? For example, in Ahuja{Orlin, pushing is done from the minimum level,whereas in practical terms, it seems better to push from the maximum level. Canyou still retain a polynomial bound? Does it work better in practice?Research Problem 3. What other maximum
ow algorithms can you �nd?For instance, can you combine the MPM idea of throughput with the Goldberg{Tarjan pushing of
ows ideas? Is there a variation on the Edmonds{Karp \fat{path" routine (see [19, 57]) whose complexity doesn't depend on the capacities (thiswould be particularly attractive in practice, for it seems reasonable to augment byas much as possible)?Research Problem 4. There are a number of problems that use a maximum
ow routine as a subroutine, for instance the problem of �nding a minimum cuttree ([33, 10]). Do any of these routines, or variations on them, work particularlywell for one of these problems?Research Problem 5. There are a number of generalizations of maximum
ow, including polymatroidal
ow [40], submodular
ow [23], and generalized
ow(
ow with gains and losses), and there has been some success in generalizing themaximum
ow algorithms ([56],[27]). Can some others, or variations thereof, besimilarly generalized?Research Problem 6. There are alternative measures of an algorithm thansequential worst case time. Some of these include parallel complexity (discussed in[2, 28]) and average case behaviour. Is there a reasonable de�nition of average case,and do the algorithms discussed di�er in their average case behaviour? Is there acompletely di�erent algorithm that is particularly suitable in parallel? (The latterhas been done for matching, using randomization and a translation to a matrixquestion (see section 4.5.)

30 II. MAXIMUM FLOWResearch Problem 7. Another possibility is to create a randomized algo-rithm with good worst case behaviour. Randomization prevents systematic errorscausing poor time complexity. For instance, it is easy to show in the Goldberg{Tarjan algorithm that simply taking the node with minimum level is not a goodalgorithm. What about randomly picking a node with positive excess? Whatis the worst expected performance of this algorithm? Note that this is di�erentfrom average case behaviour, for the probability model is in the algorithm, not theinput.Research Problem 8. The parametric maximum
ow problem has the arccapacities a function of a single parameter. The objective is to do such thingsas �nd the optimal value for the parameter, determine the breakpoints in thesolution value and so on. The excellent paper by Gallo, Grigoriadis, and Tarjan[26] gives a number of references and shows how the Goldberg{Tarjan algorithmcan be used to solve these problems in time proportional to the time to solve asingle maximum
ow problem (previous algorithms solved a series of maximum
ow problems). One intriguing question they raise is whether such a modi�cationcan be done for any maximum
ow algorithm. Or, more realistically, can theAhuja{Orlin algorithm (or some modi�cation) be so modi�ed? See also [50].

CHAPTER IIIMinimum Cost Flow1. IntroductionThe minimum cost
ow model is one of the most frequently used in OperationsResearch. This is due to three reasons: it is easy to understand, it is widelyapplicable, and solutions to reasonable problems can be found very quickly. Thesenotes concentrate on the third aspect: solvability. For more information on theapplicability of network models see [1].In this section, we will concentrate on various general solution techniques, withan emphasis on papers and results from the past two or three years. We beginwith two cycle canceling algorithms. These algorithms have the advantage of beingconceptually very simple and perhaps practical. Following sections study scalingalgorithms. 2. Canceling the Best CycleLet G = (V;A) be a directed network with a cost on each arc a of ca and acapacity ua. Associated with each node i 2 V is an integer b(i) representing itssupply or demand (b(i) < 0 means i has a demand for
ow; b(i) > 0 is a supply).The minimum cost
ow problem is to move the
ow from the supply vertices tothe demand vertices along the arcs so as to minimize the total cost. This can bewritten as a linear program as follows:mincxXf(i;j)2Agx(i;j) � Xf(j;i)2Agx(j;i) = bi0 � xa � uaLet n = V and m = A. 31

32 III. MINIMUM COST FLOWThere are a number of optimality conditions for the minimumcost
ow problem.We will begin with one based on negative cycles. First a few de�nitions. An arc(i; j) with
ow x(i; j) has residual capacity u(i; j)� x(i; j) and cost c(i; j). It alsogives rise to an arc (j; i) with residual capacity x(i; j) with cost �c(i; j). An arcis a residual arc if it has positive residual capacity. A residual cycle is a directedcycle of residual arcs and has cost equal to the sum of the costs on the cycle.The following theorem is the main theorem of this section:Theorem. A feasible solution to a minimum cost
ow problem is optimal if andonly if there are no negative cost residual cycles.Problem 1. Prove the above theorem. (Hint: Argue that any solution with net
ow of zero at each node can be decomposed into at most A cycles. The theoremthen follows easily.)(if) If an optimal solution had a negative residual cycle then, after augmenting aroundthe cycle, a better feasible solution could be found, a contradiction.(only if) Let f be any feasible solution and let f� be the optimal solution. Assume f isnot optimal. Examine the
ow x = f� � f , where negative
ow on an arc is taken tobe positive
ow on the arc in the opposite direction. Since both f and f� are feasible,x has net
ow 0 at each node. Now examine any arc e with xe nonzero. We cancreate a path of nonzero
ows beginning at the head of e. Since the net
ow at eachnode is 0, if we enter a node we have not visited before we can leave it. This continuesuntil we enter a node we have visited, at which point we have found a cycle. We canremove an amount of
ow equal to the minimum
ow on the cycle from each arc onthe cycle, deleting one arc from x. We can do this at most m times, decomposing xinto m cycles. Each cycle is a residual cycle with respect to f (for it is a cycle inf�� f). Also, f� equals f augmented by these cycles. Since the cost for f� equals thecost for f plus the cost on the cycles and has smaller cost, at least one of the cyclesmust have negative cost.De�ne the improvement of a negative cycle to be the product of the cost of thecycle and the
ow of the cycle.Problem 2. Assume you have a feasible solution and a method for �nding thenegative cycle with maximum improvement. Give a polynomial time algorithmfor the minimum cost
ow problem.The algorithm is simply �nd the maximum improvement cycle, augment around it,repeat until no negative cycle remains. By the proof of problem 1, the maximum im-provement cycle must improve by at least 1=m of the current distance from optimality.The initial solution is at most mUC away from optimal (U is the maximum capacity,C the di�erence between the maximum and minimum costs). Some calculations showthat O(m log(mUC)) iterations are required before the distance is less than 1.

3. CANCELING MANY CYCLES 33Problem 3. Show that �nding the negative cycle with maximum improvementin a graph is an NP{complete problem.Reduction from hamiltonian cycle. From a hamiltonian cycle instance, create a graphwith costs of -1 on all edges corresponding to edges in the instance. A maximumimprovement cycle is a hamiltonian cycle, if one exists.The next section presents an algorithm by Barahona and Tardos that modi�esa much earlier paper by Weintraub to give a polynomial algorithm. The main ideais to �nd a set of cycles at least as good as the minimum cost negative cycle.3. Canceling Many CyclesRead [8].We saw in the previous section that if we could �nd the maximum improvementcycle in time K then we could solve the minimum cost
ow problem in timeO(Km log(mUC)). Unfortunately, K is probably exponential. Barahona andTardos [8], modifying very early work by Weitraub [62], give a method for �ndinga set of cycles at least as good as the maximum improvement cycle.For a graph G = (V;A) with a cost function c on the edges, create an auxilliarybipartite graph B = (V 0 [V 00; A0) as follows:For each node v 2 V create two copies v0 2 V 0 and v00 2 V 00. Create an arca0 = (i0; j00 if either i = j or (i; j) 2 A. De�ne the cost of the arc (i0; j00 to be 0 ifi = j and c(i; j) otherwise.A perfect matching in B is a set of arcs so that each node is incident to exactlyone arc. Solving the matching problem in bipartite graphs (also known as theassignment problem) is distinctly easier than the minimum cost
ow problem ([14,57]).Problem 1. Show that each perfect matching in B corresponds to a set ofnode{disjoint cycles in G.Consider a matching M . Suppose (i0; j00) 2 M with i 6= j. Then (j0; k00) 2 M fork 6= j and so on until (l0; i00 2 M . The nodes i; j; k; : : : ; l then form a cycle in theoriginal graph.If (i0; i00) 2M then i is not part of a cycle.Finding disjoint cycles in the residual graph, even those with minimum cost, isnot enough to �nd the a maximum improvement set. For that, we must solve asequence of assignment problems. Let �1 > �2 > �3 > : : : > �k > 0 denote thedi�erent values of the residual capacities in G. Let G(�) = (V;E(�)) where E(�)are all arcs with residual capacity at least �.

34 III. MINIMUM COST FLOWProblem 2. Consider solving an assignment problem using the auxilliary bipar-tite graph of G(�). What is a lower bound on the improvement when augmentingaround the corresponding cycles in G?If c is the sum of the costs in the cycles, then, since every cycle can be augmented byat least �, the improvement is at least c�.Problem 3. Suppose the assignent problem corresponding to G(�i) for i =1; : : : ; k is solved and the best lower bound used. Show that the improvement isat least that of the maximum improvement (single) cycle in the original graph.Let �i be the residual capacity of the maximum improvement cycle. Then G(�i) con-tains every edge of the cycle. Therefore the cycle is feasible for the matching problem,so the minimum cost solution will be at least as good as that for the single cycle.The result of this problem gives an algorithm for the minimumcost
ow problem:create the residual graph, solve a series of assignment problems, augment alongthe best set of cycles found, repeat. We previously showed that no more thanO(m log(mUC)) cancellations are required. In the above de�nition of �k, clearlyk � m, so each cancellation requires solving at most m asssignment problems.The overall time bound is O(m2A log(mUC)), where A is the time to solve anassignment problem. This can be improved as follows:Note that the assignment problems are very similar to each other: one extraedge is added to get from one to the next. It is possible to show that given asolution to one, the solution to the next can be solved with one shortest pathcalculation, where the corresponding graph has negative weights.The �nal time bound is O(m2(m+ n log n) log(mUC)).4. Canceling a Good CycleRead [30].An alternative to canceling a set of cycles at least as good as the maximumimprovement cycle is to cancel a single cycle that is \good enough." Goldberg andTarjan [30] show that the cycle that has minimummean cost is such a cycle. Themean cost of a cycle is de�ned to be the cost of the cycle divided by the numberof edges in the cycle.In order to show that this algorithm works we need to understand some conceptsfrom duality theory. A price function p assigns a value to each node of G. Thereduced cost for an arc (i; j) with respect to p is cp(i; j) = c(i; j) + p(i)� p(j).Problem 1. Show that the reduced cost of a cycle is the same for every valueof p.

4. CANCELING A GOOD CYCLE 35Consider an adjacent pair of edges on the cycle (i; j) and (j; k). The cost from thispair is c(i; j) + p(i) � p(j) + c(j; k) + p(j) � p(k) = c(i; j) + c(j; k) + p(i) � p(k).Continuing around the cycle cancels o� all the p values.An alternative optimality criterion is as follows:Theorem. A feasible solution f is optimal if and only if there is a price functionp so that the reduced cost for every residual edge is nonnegative.Tardos [55] and Bertsekas [9] independently de�ned the notion of �{optimality.A feasible circulation is �{optimal if there is a price function p so that the reducedcost for every residual edge is � ��.Problem 2. Show that if all the arc costs are integer and � < 1=n then�{optimality implies optimality. (Hint: What is the cost of the minimum costcycle?)If each arc has cost > 1=n then the minimum cost cycle has cost > �1. Since all thearc costs are integer, the minimum cost cycle must have cost � 0 so the solution isoptimal.For a feasible
ow f , let �(f) be the minimum epsilon such that there exists a pso that f is �{optimal with respect to p. We can relate this value to the minimummean cost residual cycle. Let �(f) be the mean cost of a minimummean residualcycle.Problem 3. Show that for any circulation f , �(f) = maxf0;��(f)g.Consider any cycle � with l edges. If we add �(f) to each edge, � must end upwith nonnegative cost, so c(�) + �l � 0. This means c(�)=l � ��(f) for all � so�(f) � ��(f).Now, suppose �(f) � 0. Then �(f) = 0 (the solution is optimal). Otherwise, add��(f) to each arc cost. Since there are no longer any negative cycles, there exists acost function that gives a postive reduced cost to each residual edge. Now subtract o�the ��(f). The reduced costs are all at least �(f), so � � ��(f).Problem 4. Show that canceling a minimummean cycle cannot increase �(f).In order for �(f) to equal ��(f) there must be a price function that realizes �(f) forwhich all arcs on the minimum mean cycle have reduced cost ��(f). Augmentingaround this cycle only creates arcs with reduced cost �(f) so � has not increased.For the proof, we need to show how quickly �(f) decreases. Let f be a feasiblesolution, let � = �(f), and let p be a price function that gives �. Consider asequence of m minimum{mean cycle cancellations.Problem 5. Suppose the reduced cost for every arc in each cycle cancelled isnegative. Show that the �nal solution is optimal.

36 III. MINIMUM COST FLOWBy the argument in problem 3, if an augmentation is done using only negative reducedcost arcs only positive reduced cost arcs are created. After at most m augmentationsthere are no negative reduced cost arcs, so the solution is optimal.Problem 6. Suppose an arc is used with non{negative reduced cost. Showthat just before the augmentation �(f) = (1� 1=n)�.Let the length of the cycle be l. If one arc is non{negative, then the cost of the cycleis � ��(l� 1)=l � ��(n� 1)=n. But that implies that the �(f) � (1� 1=n)�.Some logarithmic calculations show that for integer costs O(nm log(nC)) iter-ations are required for optimality. This can be changed to O(nm2 log n) for astrongly polynomial bound.Karp [37] gives an algorithm for �nding the minimum mean cycle that requiresO(nm) time. This gives a total time ofO(n2m2minflog(nC);m log ng)on networks with integer arc costs.5. Cost ScalingRead [29].The fundamental idea behind scaling is to ignore most of the problem data andsolve an approximation to the instance. More data is added and the previoussolution is used to �nd a more accurate solution. We begin with an algorithmby Goldberg and Tarjan ([29]) that uses cost scaling. In this case, most of thecost information is ignored initially and added in steps. Recall the concept of�{optimality from the cycle cancelling section. We will begin with a
ow that is�{optimal, where � is the maximum cost in the network. We will then improve this
ow so that it becomes �=2 optimal. After log nC such improvements, the
owis �{optimal for � < 1=n. Assuming the costs are integer, this implies the
ow isoptimal, as we previously proved.A generic description of a cost scaling algorithm is as follows:Procedure Min-cost(V,A,u,c)� = max(i;j)2A jc(i; j)jf� = some feasible
owp�(v) = 0; for all vwhile � � 1=n doImproveApproximation(�; f; p)� = �=2endwhileend.

5. COST SCALING 37ImproveApproximation is a routine that takes an �{optimal solution and createsan �=2{optimal solution.Goldberg and Tarjan suggest a number of possibilities for ImproveApproxima-tion varying in the sophistication of the data structures, the ability to be paral-lelized, and so on. We will examine two: a generic pseudo
ow based method, andan improvement thereof. These algorithms are highly reminiscent of Tarjan's wavealgorithm for maximum
ow ([58]).We begin with the concept of a pseudo
ow. A pseudo
ow is an assignment ofvalues to the arcs that satis�es capacity and lower bound constraints, but doesnot necessarily satisfy conservation of
ow at the nodes (remember a pre
ow hadnonnegative excess at each node; a pseudo
ow allows positive or negative). Weextend the concept of �{optimality to pseudo
ows in the obvious way: a pseudo
owis �{optimal if there is a price function p such that the reduced cost of every residualarc is at least ��.Problem 1. For a given p, give a method for �nding a 0{optimal pseudo
ow.Simply set f(i; j) = u(i; j) if cp(i; j) < 0 and f(i; j) = 0 otherwise.So, given an �{optimal
ow, we can create an �=2{pseudo
ow. We now givemethods for changing an �=2{psueudo
ow into an �=2{optimal
ow.Let e(i) be the net
ow into node i minus its requirement. We say that i isactive if e(i) > 0.Problem 2. Show that a pseudo
ow with no active node is a
ow. The sum of the balances always equals 0 (the
ow on each arc appears once positivelyand once negatively). If no balance is positive then none is negative, so the pseudo
owis a
ow.Recall that cp(i; j) is the reduced cost of arc (i; j) relative to p. We will say thata residual arc (i; j) is admissible relative to p if it has positive residual capacityand ��=2 � cp(i; j) < 0. Let r(i; j) be the residual capacity of (i; j). For an activenode i, consider the following routine:PushRelabel(i)if there exists an admissible arc (i; j) thenpush min(e(i); r(i; j)) from i to jelse p(i) = p(i) + �=2 + minfcp(i; j) : (i; j) 2 A; r(i; j) > 0gend.Problem 3. Show that Pushrelabel(i) preserves �=2{optimality.Pushing on an arc can only create an arc in the residual graph with positive reducedcost. Now consider relabelling node i. The reduced cost for any arc (i; j) is decreasedby at most �=2 plus the previous reduced cost. Therefore the reduced cost of the arc isat least ��=2, so the solution is still �=2{optimal.

38 III. MINIMUM COST FLOWThis leads to our �rst algorithm for ImproveApproximation:ImproveApproximation(�; f; p)Create initial solutionwhile there is an active node doselect an active node iPushRelabel(i)endwhileend.From problems 2 and 3, if we show that ImproveApproximation terminates, thenit must terminate in an �=2{optimal
ow. The proof of termination is very similarto the case for maximum
ow.Problem 4. Show that p(i) only increases and that it increases by at least �=2.Relabelling is done only when there is no admissible arc, so minfcp(i; j) : (i; j) 2A; r(i; j) > 0g � 0. The amount added to p(i) is at least �=2.We now wish to bound the number of times p increases for each node. Let f 0be the �{optimal
ow at the beginning of the phase and f the current pseudo
ow.Let i be an active node. Using decomposition techniques similar to those used formaximum
ow, we can show that there exists a node j and a path P from i to jsuch that j has negative excess, P is an augmenting path with respect to f , andthe reversal of P is augmenting with respect to f 0. Formalizing this is somewhattedious:Problem 5. Show the above statement.Let G+ = (V;E+) where E+ = f(i; j) : (f 0(i; j) > f(i; j)) or (f 0(j; i) < f(j; i))g, andG� = (V;E�) is the corresponding graph with the roles of f and f 0 reversed. Anyedge in E+ is a residual edges with respect to f and any in E� is residual with respectto f 0. Furthermore, if (i; j) 2 E+ then (j; i) 2 E�. So, if we �nd a suitable P in G+then we are done.Fixing i, suppose we can reach no node j with negative excess in G+. Let S be the setreachable from i and S0 = V � S. The
ow across any cut with respect to f 0 is zero.Also, every edge from k 2 S to j 2 S0 must have f(k; j) � f 0(k; j) and every edgefrom j to k has f(j; k) � f 0(j; k). So the
ow across the cut in f is non-negative.But it is easy to see that the
ow across a cut equals �b(S) < 0, a contradiction.This leads to a bound on the number of times p(i) is increased.Problem 6. Suppose j has negative excess. What is the relation between p(j)now and at the beginning of the phase?

5. COST SCALING 39If j has negative excess, then at no point would we have chosen j for PushRelabel soits p value is unchanged.Problem 7. Get a bound on p(i) based on P . Do the same for p0(i) basedon the reversal of P . Combine them and bound the number of increases to p(i).For i with positive excess, �nd P and j as in problem 5. Since P is augmenting withrespect to f and f is �=2{optimal, p(i) � p(j) + P�=2 + P(i;j)2P c(i; j). Similarly,at the beginning of the phase, f 0 is �{optimal, so p0(j) � p(i) + P�+P(j;i)2P 0 c(j; i).Using p(j) = p0(j) and c(i; j) = �c(i; j) gives p(i)� p0(i) � (3n=2)�.We say that a push is saturating if the residual capacity of the arc after the pushis 0.Problem 8. How many saturating pushes are there in a phase?A saturating push removes the arc from the residual graph. It cannot appear againuntil (j; i) is used. But the dual for j must have increased in the interim. This givesan O(n) bound per arc, or O(nm) in total.We need one more result to bound the number of unsaturating pushes.Problem 9. Show that the graph of admissible arcs is acyclic.Initially the admissible graph is empty, so is acyclic. A push operation creates no newadmissible edges. After a relabel, no admissible edge enters i (the dual of i increasesby at least �=2 so all arcs entering must get non{negative reduced cost). If the graphwas acyclic before the relabel, then it must remain so.Let h(i) be the number of nodes reachable from i in the graph of admissiblearcs. We will now use the potential function � = Pfh(i) : i is activeg.Problem 10. Show that each relabel or saturating push increases � by at mostn and each nonsaturating push decreases � by at least 1. What is the number ofnonsaturating pushes?A nonsaturating push on (i; j) makes i inactive while possibly making j active. Buth(j) � h(i)� 1, since i reaches everything j does as well as i itself, so � decreases byat least 1.A relabel on i increases only h(i) (since no arc enters i afterwards), so the increaseis at most n. A saturating push on (i; j) can only increase h(j), so again the increaseis at most n.Since � is non{negative and has an initial value of at most O(n2), the number ofnonsaturating pushes is O(n2m).Problem 11. What is the complexity of this algorithm?

40 III. MINIMUM COST FLOWEach call to ImproveApproximation requires O(n2m) time (the nonsaturating pushtime dominates). The number of scaling phases is O(log nC) for a total ofO(n2m log nC).We can improve this slightly by examining the nodes in a certain order (just likethe maximum
ow case). Because the admissible graph is acyclic, we can orderthe nodes in the network so that if (i; j) is an admissible arc, then i < j (this iscalled the topoligical ordering).Problem 12. Suppose the nodes are examined in topological order and norelabel is required. Show that the resulting pseudo
ow is a
ow.Every push is to a higher node. Therefore, if no relabel is done, there are no furtheractive nodes, so the result is a
ow.Problem 13. How many node examinations are required if the nodes areexamined in topological order?Since there are O(n2) relabels, there are O(n3) node examinations. Each node ex-amination has at most one non{saturating push, so O(n3) nonsaturating pushes arerequired.Note that a push does not change the topological order, only a relabel does. Itis possible to determine the topological order of a graph in O(m) time. Since thereare O(n2) relabellings this leads to O(n2m) time. We can improve on this by thefollowing: Starting with a topological order of the nodes, after a relabel of node i,move i to the �rst position.Problem 14. Show that this is a valid topological ordering for the new admissi-ble graph. Suppose we relabel i. We have already shown that no admissible edge enters i after arelabelling. For each (i; j), i comes before j. For each (k; j) with k 6= i, neither theadmissible graph or the topological order change, so the order is still valid.Problem 15. What is the complexity of this algorithm?O(n3 log nC).Goldberg and Tarjan continue by adding dynamic trees, replacing an O(n2) termwith one of O(m log n), and then discuss other improvements and the parallel case.Attached to this set of notes is a listing of a straightforward implementationof this algorithm. One useful project is to examine the code to see how simplethe algorithm really is. How could you improve the execution time of this code?How fast does it work in practice (say, compared with standard network codes)?Does the computation time vary much depending on the network topology? Costranges? Does the time seem to follow our worst case analysis or does it seem towork di�erently in practice? These are a sample of the questions that might beasked.

6. SHORTEST PATH AUGMENTATIONS 416. Shortest Path AugmentationsRead [49]In the previous algorithm, we had the following problem: Transform a givenpseudo
ow into an optimal
ow. The previous algorithm \almost" did that; itfound an �{optimal
ow. An alternative, and perhaps more natural, approachis to directly move
ow from nodes with positive excess to nodes with negativeexcess. Of course, we can not do this movement arbitrarily. We must be able toprove that we have an optimal
ow at termination. We do this by keeping a dualfeasible solution at all times. Then, if we can prove that we must terminate in a
ow, then we will terminate in an optimal
ow.Problem 1. Show that if we have a feasible
ow f and a price function p suchthat cp(i; j) � 0 for every (i; j) with positive residual capacity, then f is optimal.This follows directly from the complementary slackness conditions.Problem 2. Give a method for �nding a pseudo
ow f and price function psuch that every residual arc has nonnegative reduced cost.For every arc with negative reduced cost with respect to p, set the
ow on the arc equalto the upper bound.Given a pseudo
ow and associated price function, we will try to update the
owand price so as to keep dual feasibility but reduce the sum of the positive excesses.Choose a node i with positive excess. We can easily calculate the shortest path(with costs as distances) from i to every other node using arcs in the residualnetwork.Problem 3. Show that the shortest path is the same whether original costs orreduced costs are used.The cost on a path P from i to j is P(l;k)2P c0(l; k) = P(l;k)2P (c(l; k)� p(l) + p(k) =p(j) � p(i) +P(l;k)2P c(l; k). Therefore, the cost function simply adds a constant tothe length of every path, so the shortest path remains the same.Now let j be some node reachable from i, and P the shortest path that connectsthem.Problem 4. What is the maximum
ow can be sent from i to j along P ?The minimum of the excess at i, the negative of the excess at j, and the residualcapacity of an arc on P .

42 III. MINIMUM COST FLOWBut we must update the price function so the reduced cost for any residual arcare nonnegative. Let d(k) be the shortest distance from i to k in the residualgraph (with respect to the reduced costs). Consider the cost function p0 = p � d.Problem 5. Show that the reduced cost with respect to p0 for any arc in theresidual graph before augmenting is nonnegative.Since d gives the shortest paths in the residual graph, d(k) � d(l) + c0(l; k) for (l; k)in the residual graph. Substituting in gives new residual costs of c00(l; k) = c0(l; k)�d(l) + d(j) � 0.Problem 6. What arcs are added to the residual graph after augmenting?What are their reduced costs?The only arcs added to the residual graph are the reversals of those on the augmentingpath. But arcs on the augmenting path have new residual cost 0, so the reversals doalso.Therefore, we have reduced the positive excess while keeping a dual feasibleprice function.Problem 7. How many shortest path calculations are required? What algo-rithm can be used for this shortest path calculation? What is the complexity ofthis algorithm?If U is the total positive excess created during initialization, then U shortest path cal-culations are required. Since we work with reduced costs that are always nonnegative,we can use fast, Dijkstra{like algorithms for the shortest path calculation. The bestbound is then is O(U(m+ n log n)).Problem 8. Consider the assignment problem. What is the complexity of thisalgorithm for that problem?Here U = O(n) so we get a bound of O(mn + n2 log n).7. Capacity ScalingThe correctness of the previous algorithm is independent of the choice of i and j.Of course, this means we can play a number of games in order to get a polynomialbound. One method is to scale the arc capacities in such a way as to replace theU term with a log(U) term. There are a number of ways of presenting this. Wewill change our basic model to that of uncapacitated networks with supplies anddemands. We also add in�nite capacity arcs between every i and j with su�cientlyhigh cost to ensure that they will not be used in any optimal solution. (This is

7. CAPACITY SCALING 43mainly for notational convenience). We will also assume all costs are positive. Thesupply at i will be denoted b(i) (negative b(i) represents demand).Problem 1. Give a method for translating a circulation problem with upperbounds to an uncapacitated network with supplies and demands.Replace each capacitated edge (i; j) with two edges, (i; k) and (j; k). Let the cost of(i; k) be cij and the cost of (j; k) be 0. Add uij to the supply on j, and keep the supplyon i the same. Let the supply on k be �uij (a demand).Our goal is to push only from nodes with high excess to those with high negativeexcess. We begin with a pseudo
ow where there is a � such that either all thepositive excesses are less than 2� or all the negative ones have absolute value lessthan 2�, or possibly both. We then do augmentations to make this condition truefor �. For this, we will want to ensure that every augmentation pushes at least�:For scaling phase �, let S(�) = fi : e(i) � �g and T (�) = fi : e(i) � �g.Thus, at the beginning of scaling phase �, either S(2�) or T (2�) is empty.Problem 2. How many scaling phases are there?Once � < 1 we can terminate, so there are O(log U) scaling phases.The capacity scaling algorithm is exactly the shortest augmentation algorithmwith the following di�erences:(1) Augmentations are done from i 2 S(�) to j 2 T (�).(2) Exactly � units of
ow are pushed, independent of the excesses or the arccapacities.Problem 3. Show that during scaling phase � the capacity of each arc is aninteger multiple of �. Show that the push above neither violates arc capacitiesnor changes a node from positive to negative excess or from negative to positiveexcess.Each arc capacity begins as an integer multiple of �. Since every augmentation pushesexactly �, this property is retained. Finally, since we push from nodes with excessgreater than � to those with excess less than ��, no excess changes sign.Problem 4. How many augmentations are there in a scaling phase?Consider the case when S(2�) is empty at the beginning of the phase. Each augmen-tation then reduces S(�) by one, so at most n augmentations are required. The casefor T (2�) empty is similar.Problem 5. What is the overall complexity of this algorithm?

44 III. MINIMUM COST FLOWO(n log U) times the time for a shortest path calculation with nonnegative distances.But this is in terms of the transformed problem. In terms of the capacitated circulationproblem, the bound is O(m logU).Thus far, we are following a version of Edmonds and Karp's algorithm ([19]).But is is possible to improve on this bound by removing the e�ect of U completely.The idea is to identify arcs that must have nonzero
ow on them in any optimalsolution.Problem 6. What is the most a
ow on an arc can change during a scalingphase? How about for the rest of the algorithm?Since each augmentation changes the
ow by �, and there are at most n augmenta-tions, the change is n�. The total over all remaining augmentations is then 2n�.So any arc with
ow more than 2n� must have positive
ow for any optimalsolution. Such an arc must have reduced cost zero for the remainder of the al-gorithm. A natural operation is to shrink the arc, combining its endnodes. Wereplace i and j with a node k, and replace any arc incident to i or j with oneincident to k. The supply at k is the sum of the supplies of j and i. We now havea problem with one less node.The following problem shows that after a limited number of scaling phases wecan shrink an arc.Problem 7. Suppose at the end of phase �, � < jb(i)j=(4n2) for some node i.Then there is an arc incident to i that can be shrunk.First, note that the excess at i is less than 2n� since the total excess in the networkis less than that amount. Suppose b(i) is positive. The least amount leaving i isb(i)� e(i). This can go out on no more than n � 1 arcs, so one arc must have
owat least 2n�.Problem 8. Show that the �rst arc is contracted after O(log n) scaling phases.Initially, b(i) = � for some i. After O(log n) phases, � is small enough to satisfythe conditions of the previous problem.If this could be repeated, then it would lead to O(n log n) applications of theshortest path algorithm. Unfortunately it cannot, for the nodes created by con-traction may have very small b(k) but large excesses. Many phases are required topush � small enough. To �x this, you must identify when this anomalous resultoccurs and create special augmentations to �x it. See the Orlin paper for details.One practical question.Problem 9. Is arc contracting likely to be useful in practice? Should you addit to a capacity scaling code?

8. GENERALIZED NETWORKS 458. Generalized NetworksRead [27]Up until now, we have implicitly made an important assumption on how
owsmove: whatever enters an arc leaves an arc. In many important applications, thisassumption does not hold. Rather, a certain proportion of the
ow that enterswill leave. This proportion may be less than 1 (
ow is lost) or greater than 1 (
owis gained). Because of leakage, not all the
ow entering a water pipe or electicalwire may leave the other end. The ability to modify the
ow along an arc is alsouseful for modeling purposes, converting one unit into another. This truly is auseful generalization.Unfortunately, it does not seem simple to optimize such networks, despite alarge amount of work done. For instance, the only work done on solving minimumcost generalized
ow has been simplex based methods. Even there, such funda-mental questions as a combinatorial anti{stalling rule are not known. No fullycombinatorial method is even conjectured (if anyone is looking for a dissertationtopic, I can't make it any more obvious).Recently, matters have improved for the maximum generalized
ow problem.In this very impressive paper, the authors have given polynomial algorithms for�nding the maximum generalized
ow. The algorithms are fairly complicated, butshould be reminiscent of the minimum cost
ow algorithms we have discussed.This is no coincidence. In 1977, Truemper ([61]) noted the relationship betweenmaximum generalized
ow and minimum cost (pure)
ow.We begin with a few de�nitions. Every arc in a generalized
ow problem hasa multiplier aij associated with it. If f(i; j) units of
ow leave i then aijfij unitsenter j. Based on this, the conservation of
ow constraint for i isXj ajifji �Xj fij = 0:An arc with multiplier greater than 1 is a gain arc; one with multiplier lessthan 1 is a loss arc. The gain of a directed cycle of arcs is the product of the arcmultipliers around the cycle.A generalized
ow satis�es conservation of
ow at all nodes except a given nodes. Problem 1. In pure maximum
ow, we have both a source and a sink. Whyis that not required here?Cycles with gain less than 1 act as sinks (they can absorb
ow); cycles with gaingreater than 1 act as sources (they create
ow). Only cycles with gain equal to 1 donot create or destroy
ow.

46 III. MINIMUM COST FLOWAlthough we call s the source, in keeping with the paper, we will attempt tomaximize the
ow in to s.We de�ne the residual graph as we did for pure network
ows, except the mul-tiplier on a reverse arc is the inverse of the multiplier on the forward arc.Problem 2. What is the upper bound on the reverse arc of an arc with multi-plier 2 and
ow 5?10.One fundamental result, due to Onaga ([47]) relates a generalization of aug-menting paths to optimal
ows. A generalized augmenting path (GAP) is a
owgenerating cycle together with a directed path from a node on the cycle to s (thepath may be empty).Problem 3. Prove that if the residual graph contains a GAP then the
ow isnot optimal.If the graph contains a GAP, then augmenting around it creates
ow at any chosennode. This
ow can then be sent to s along the path.Proving the reverse implication, though involved, is just like the case for purenetwork
ows. We prove a decomposition theorem, assume that we have a nonop-timal
ow, take the di�erence between the optimal
ow and the nonoptimal
ow,and show that this implies a GAP. Here is the decomposition theorem. Given ageneralized
ow, we can write it as the sum of(1) A
ow generating cycle and a path to s,(2) A cycle with unit gain, and(3) A pair of cycles, one with gain > 1, one with gain < 1 and a path from the�rst to the second.each of which has
ow values that satisfy conservation of
ow (except at node s).Problem 4. Prove this decomposition.Let f be the
ow, and G0 the subgraph of G with arcs with positive value. By conserva-tion of
ow G0 must be empty (in which case we are done) or it must contain a cycle.If the cycle has gain 1, it is of type 2, so we can cancel the minimum
ow around thecycle. Otherwise, assume G0 has a
ow creating cycle. After subtracting
ow fromthe cycle, keeping conservation of
ow) until one arc gets value 0, the tail of that nodemust have
ow leave on some noncycle arc. We follow this
ow (from conservationof
ow) until it either reaches s, or it is destroyed by a cycle. This results in type 1or type 3 component respectively. The proof now follows by induction.(Hmmm - the proof in the paper is more general and nicer).

8. GENERALIZED NETWORKS 47Problem 5. Show that if a
ow is not optimal, then there is a GAP.Consider an non-optimal
ow f and the optimal
ow f�. f � �f is a
ow so it canbe decomposed as above. Since more enters s under f� than f , there must be at leastone component of type 1. Since everything in f�� f is in the residual graph of f , thetheorem follows.So our goal is simply to �nd and augment around GAPs. This turns out tobe simpler if we know where the cycle is. We can transform the problem so thatevery
ow{generating cycle goes through the source. The idea is simple: saturateall gain arcs and add some arcs to imitate their e�ect. The transformation beginsby setting the
ow on every gain arc to its upper bound. In general, this is nota feasible
ow: there is either a positive or negative excess on each node. If theexcess is negative (more leaves the node than enters it) we add an edge from s toi with a very high multiplier and capacity equal to minus the excess divided bythe multiplier. If the excess is positive, then we add an edge from i to s with highmultiplier and upper bound equal to the excess. We then take the residual graphtogether with these added edges as our transformed network. A maximum
owin this network can be transformed into a maximum
ow in the original networkjust by adding in the
ows we initially set. (wrestle, wrestle). The transformedproblem is called the restricted problem.Problem 6. Take a small example, do the transformation, and convince yourselfof its validity.A lot of handwaving.Problem 7. What can be said about all the
ow generating cycles?At least initially, they all go through s, because all gain arcs are incident to s.One simple approach is to �nd a gain cycle and cancel it (the advantage ofworking with the restricted problem is that we no longer need to �nd a path back.We will have to prove that we do not destroy the structure of the restricted problem(say by creating gain cycles not through s), but we save that for the moment.Just as we could apply a price function in minimum cost
ow, we can relabel thenodes of the graph changing the arc multipliers and capacities. Consider rescalingthe units exiting an arc by some positive multiplier (say changing the
ow leavingthe network from pennies to dollars).Problem 8. What changes in the network are required to keep the network\the same"?If the multiplier is �i, we must replace uij with uij=�i and the multiplier aij withaij � �i=�j .

48 III. MINIMUM COST FLOWWe call this updated network the relabeled network. It is straightforward toprove that a network and its relabeled version have many similar properties: onecan convert a
ow from one to the other and the residual networks are the same.We can de�ne a labeling that helps us �nd gain cycles. We can �nd the highestgain path from each i to the source. Suppose we take �i as the inverse of thisvalue for each i (with �s = 1).Problem 9. Show that the relabelled multiplier for every arc not leaving s is� 1. Show that for every node i with a path to s that there is a path of unit arcsin the relabeled graph.The key is to recognize that �nding gain paths is exactly like �nding shortest pathswhere we use the logarithm of the multipliers as distances. This then follows from theprinciple of optimality.Problem 10. What does the most e�cient (i.e. highest gain) cycle look like.It is a (i; s) path of unit arcs together with an arc from s to i with maximum multiplier.The only thing left to prove is that augmenting around the maximum gain cycledoesn't add any gain cycles not through s and, furthermore, does not increasethe value of the maximum gain cycle. The proof of this is analagous to similarfacts about cancelling the minimum cost cycle on a graph, so is omited (i.e. I amwimping out).This algorithm is not very good. It behaves like augmenting along a minimumcost path for minimum cost
ow: the objective may change by only a minimalamount. For this case, the minimal amount may be very small indeed. It ispossible to improve this somewhat, by augmenting along many cycles of the samevalue. Suppose the maximum gain is � and that there are a number of edges inthe relabelled graph with value �.Problem 11. How can you �nd the maximum
ow using only cycles with gain�?This is simply a (normal) maximum
ow problem in the graph de�ned on the unitedges and those with gain �.At the end of this, there are no cycles of gain � so the bound is based on thenumber of di�erent values of cycle gain. For example, if all multipliers are powersof two, then this algorithm runs in polynomial time.The paper continues with algorithms that give a polynomial bound. The �rstis like the above, but it uses a minimum cost
ow routine to work with a largergraph than just those with unit
ow or gain �. The second looks for GAP thatare large enough to signi�cantly improve the objective. There is clearly room forimproved algorithms.

9. THE NETWORK SIMPLEX METHOD 49One interesting exercise is to see if the reliance on restricted graphs is necessaryor merely convenient. I lose a lot of feeling for the problem as soon as we moveto the restricted problem and it would be nice to work with the original problemdirectly.Overall, though this paper is a start, the application of network ideas to gener-alized networks is almost wide open.9. THE NETWORK SIMPLEX METHODThe network simplexmethod is an alternative for solving network
ow problems.In this section, we examine the network simplex method and its specializations tosuch problems as the shortest path problem and the maximum
ow problem. Wealso examine extensions to generalized networks and some possible extensions tomatchings.9.1. Fundamental Algorithm. Recall the minimumcost
ow problem: Givena graph with vertices V , each with a supply bi, and arcs A, each with a cost cij,the problem is to Minimize X cijxijXfj:(i;j)2Agxij + Xfj:(j;i)2Agxji = bi for all i(1) xij � 0(2)This problem is simply a linear program so solutions can be found by usingthe simplex method. The simplex method can be steamlined considerably byexploiting the network structure. This both clari�es the algorithm and greatlyenhances its practical e�ectiveness.This is a (very) brief review of the simplex method for linear programming.Consider the problem Minimize fcx : Ax = b; x � 0g. A fundamental conceptis that of a basis. A basis is a maximum size set of columns (variables) that islinearly independent (that is, no column can be expressed by a linear combinationof the others). Given any basis B, there is an associated primal solution x = B�1band an associated dual solution y = cBB�1. A basis with corresponding x � 0 is afeasible basis, and x is a basic feasible solution. Every variable j has a reduced costmeasuring the improvement in objective if j were to enter the basis. The reducedcost for j is cj � yaj where aj is the column associated with j in A.

50 III. MINIMUM COST FLOWThe simplex method begins with a basic feasible solution with the associateddual values. The reduced cost for each variable is calculated. If no variable hasnegative reduced cost, the current solution is optimal. Otherwise, some variablewith negative reduced cost is chosen to enter the basis (the entering variable).Some variable must be found to leave the basis. This is done by calculating thechange in value for each basic variable as the value of the entering variable isincreased. The �rst variable to reach 0 is chosen as the exiting variable. If morethan one variable reaches zero simultaneously then any such variable can be theexiting variable. The solution and duals are recalculated for the current basis.This completes one pivot. Pivots continue until no variable has negative reducedcost.To specialize this method for network problems we take advantage of the specialstructure of the basis. First we need to determine the size of the basis. An obviouslimit is n.Problem 1. Is it possible to �nd n linearly independent columns for a networkproblem?No. The sum of the n rows is 0, so there must be less than n linearly independentcolumns.We will assume that G is connected. We know from the above that there canbe no more than n � 1 variables in a basis. To show that exactly n � 1 su�ces,examine the relationship among arcs in the basis.Problem 2. Can some of the arcs in a basis form a cycle?No. Multiply some of the arcs by -1 so all arcs around the cycle go in the samedirection. Now take any arc (i; j) on the cycle. The sum of all the other arcs isexactly -1 times (i; j).A set of n�1 arc without cycles is a spanning tree of the underlying undirectedgraph if we ignore directions. To show that these are linearly independent, weexamine the corresponding matrix. Examine the matrix of a spanning tree. Onerow is redundent (from problem 1) so we will delete row 1. Now rename the rows2, 3, : : : ; n and the columns a2; a3; : : : ; an so that one end of ai is i and the otheris j for some j < i.Problem 3. Show that such a reordering is possible. What does the resultingmatrix look like? What does that imply about the arcs?Beginning at node 1, examine the nodes in breadth{�rst search. Each node, whenlabelled, is adjacent to exactly one labelled node. The edges in this order give therequired ordering.The resulting matrix is upper triangular, hence of full rank, which is n� 1, since wedeleted row 1.

9. THE NETWORK SIMPLEX METHOD 51Problem 4. Given a basis and a supply vector b, show how to �nd the corre-sponding basic solution.Using the reverse order as in Problem 3, simply assign
ows to the arcs as requiredby feasibility.It is equally straightforward to �nd a corresponding set of dual values. We arelooking for y1; y2; : : : ; yn. Since the basis has rank n � 1, one of these values isarbitrary, so we will set y1 = 0. Given that, and the requirement that the reducedcost for basic arcs is zero, the remainder of the duals can be found.Problem 5. Give a method for �nding the dual solution.Using the node order of Problem 3, assign dual values to keep the reduced cost of basicarcs 0. Since every node, when examined, will be adjacent to an examined node, thedual value will be determined.Given the primal and dual solution, we now try to �nd an arc with negativereduced cost.Problem 6. What is the reduced cost of arc (i; j)?cij + yi � yj.The calculation of the exiting arc is streamlined considerably by the simple wayin which
ows must change if the
ow on the entering arc is increased. Let (i; j)be the entering arc. The basis tree, T , together with (i; j) has exactly one cycle.Some of the arcs on the cycle (the forward arcs) are in the same direction as (i; k);some (the reverse arcs) are opposite in direction.Problem 7. Show that if the
ow on the entering arc is increased to � thenincreasing the
ow on the forward arcs by � and decreasing the
ow on reversearcs by � preserves primal feasibility.Any node not on the cycle is una�ected by this
ow change. Consider node k on thecycle. If it is adjacent to two forward arcs then one must be (i; k) and the other (k; j)for some i and j, so
ow is conserved. Similarly for the case of two reverse arcs. Oneforward and one reverse must either be (i; k) and (j; k) or (k; i) and (k; j). In eithercase, since the
ow on one is increased by � and the
ow on the other decreased by�, there is no net change.Problem 8. Which arc(s) are eligible to leave the basis?Any reverse arc that has minimum
ow among all reverse arcs.Finding an initial feasible basis can be done in many standard ways (addingarti�cial arcs is one way). This completes the generic network simplex method.The advantages over the general simplex method occur throughout the algorithm:every step is simpli�ed. The disadvantages are the same, however. The simplex

52 III. MINIMUM COST FLOWmethod as presented is not formally an e�cient algorithm. In fact, without fur-ther modi�cation, the algorithm may cycle by repeating a basic feasible solutionwithout proving optimality. In the next sections we will see how to arrange ourarbitrary choices (choice of entering and exiting variables) to ensure �niteness, andeven provide polynomial bounds for several interesting cases.9.2. Prohibiting Cycling. Cunningham ([12]) gives a very simple, and veryelegant method for avoiding cycling. This method is independent of the rule usedto choose the entering variable: it only restricts the choice of exiting variable. Wecan think of the basis tree T as being rooted at an arbitrary node (say, node 1).First note that cycling can occur only during a sequence of degenerate pivots(pivots which do not change the
ow). Therefore, cycling can only occur whenthere are degenerate arcs (arcs in the basis with zero
ow). Cunningham restrictshow these arcs can be in the basis: every arc in the basis with zero
ow is directedaway from the root. Such a basis is called strongly feasible. There are two partsto his proof: he �rst shows that it is possible to pivot from one strongly feasiblebasis to another; he then shows that strongly feasible bases prohibit cycling.Beginning with a strongly feasible basis, there is a very easy, appealing rule forpivoting to another for any entering arc (i; j). Examine the two paths from i tothe root and from j to the root. There is a unique node k that is on both pathsand is maximal (in terms of arcs) distance from the root. This node is called thejoin. Cunningham's rule is simply to begin at the join, traverse the cycle in thesame direction as (i; j) and choose the �rst eligible arc as the exiting arc.Problem 1. Show that if the pivot is nondegenerate, the resulting basis isstrongly feasible. Now do the same for the case of a degenerate pivot.If the pivot is nondegenerate, the candidates for leaving are exactly those that end upwith zero
ow. Taking the �rst from the join in the direction of the entering arc (say,at node k) implies that all other arcs with zero
ow will be between k and the rootand pointed towards k, hence away from the root.If the pivot is degenerate, then any zero
ow arc between the join and i (where (i; j) isthe entering arc) will point away from the root, hence be a forward arc and ineligibleto exit the basis. So the exiting arc is between j and the root. By taking the �rst one,all remaining zero
ow arcs will still point away from the root.To show that the method prohibits cycling we show that during a degeneratepivot the sum of the duals decreases. Repeating a basis would require an increasein this sum, which can only occur during a nondegenerate pivot.Problem 2. Let (i; j) be the newly entered arc. Examine the subtree \below"(i; j). What happens to the duals of nodes not in that subtree? What about thosein the subtree? What happens to the sum of the duals?

9. THE NETWORK SIMPLEX METHOD 53Since (i; j) caused a degenerate pivot, it must point away from the root. The dualsabove (i; j) do not change. Those below are changed as follows: we need cij+yi�yj =0. But before this value was less than 0. Since yi does not change, yj must havedecreased. Now for any other node below (i; j), the same arcs are in the basis, so, byinduction, they must each decrease also.Therefore, the sum of duals decreases.This simple method su�ces. It also leaves us complete
exibility in choosing theentering arc. In the next section we will see how di�erent choices for the enteringarc can avoid exponential sequences of degenerate pivots.9.3. Prohibiting Stalling. Strong feasibility avoids the possibility of repeat-ing a basis. However, an exponential number of bases may still be required. Todate, there is still no rule known that guarantees a polynomial bound on the num-ber of iterations required by the network simplex method. Cunningham ([13])gives rules that give only a polynomial number of consecutive degenerate pivotswhen combined with his method of strongly feasible trees.Let T0; T1; : : : ; Tp be a sequence of degenerate pivots, each with primal solutionx0. We break this sequence into consecutive stages: during each stage each archas nonnegative reduced cost (i.e. is not eligible to enter the basis) at least once.In a moment we will see that the number of stages is bounded, but �rst we willexamine a rule that guarantees that the length of a stage is not too long.Problem 1. Consider the entering edge rule that arbitrarily orders the arcsand enters the �rst arc with negative reduced cost. Then, if arc i is entered, thenext iteration starts examining the arcs at i+ 1 and so on. How long can a stagebe? (This rule is called Least Recently Considered (LRC)).The maximum number of pivots in a stage is O(jEj). When arc i is examined eitherit is not eligible to enter the basis, or it enters the basis immediately after which it isineligible to enter the basis. Therefore, after at most i pivots, i is ineligible to enterthe basis.So we know that a stage is not too long. Now we will show that there are nottoo many stages. The idea is to show that certain dual values get �xed after eachstage of the sequence of pivots. Examine the connected components of the graphinduced by edges with strictly positive x0 values.Problem 2. Suppose node i is in the same connected component as the root.What happens to the dual of i during the pivots?Its dual does not change. Since every arc with xj0 remains in the basis, all edges fromthe root to the node stay in the basis, so its dual remains the same.

54 III. MINIMUM COST FLOWNow examine all nodes that use exactly one edge with value 0 on the uniquepath to the root in Tp. We would like to show that the duals for these nodes are�xed after the �rst stage.Problem 3. For some node i, suppose the dual is not �xed after the �rst stage.What is the relationship between the dual value after the �rst stage and the �naldual value? What does that imply about the reduced cost of the zero edge in Tpused by i in the �rst stage? What can you conclude?Since the dual is not equal to the �nal value, and duals only decrease, it must be largerthan the �nal value. Now, examine the zero
ow arc (j; i) from i to the root in Tp �rany pivot in the �rst stage. Its reduced cost is �(j)��(i)�c(i; j) (by strong feasibility,since all zero
ow arcs point away from the root). But �(j) does not change duringthe stage (by Problem 2), so this is less than the �nal reduced cost of the arc (since�(i) decreases). But (j; i) is in the �nal basis tree, so the �nal reduced cost is 0.Therefore, the reduced cost for (j; i) is less than 0 for the �rst stage, contradicting thede�nition of stage. Therefore, after the �rst stage, such dual values are �xed to their�nal value.It is straightforward to modify the argument in Problem 3 to be an inductionon the number of zero edges on the path from i to the root in Tp. This means thatthe number of stages is no more than the number of arcs in a basis with zero
ow.Cunningham examines three other rules, two which reduce the pivots per stageto O(jV j). He also gives an example of an exponential degenerate sequence forBland's rule, which takes the �rst edge elgible to leave the basis (always startingat edge 1).9.4. Other Papers. Recently there have been a number of interesting paperson the network simplex method. These are listed here, with the intention thatsomeday the notes will be continued to include some or all of these papers.Specialization to Shortest Paths. Goldfarb, Hao, and Kai ([32]).Specialization to Maximum Flow. Goldfarb and Hao ([31]).Non{polynomial, But Subexponential Bounds. Tarjan ([59]).Dantzig's Pivot Rule, and Variations. Orlin ([48]) and Ahuja and Orlin ([3]).Generalized Networks. Elam, Glover and Klingman ([20]) and Trick ([60]).

CHAPTER IVMatchings1. IntroductionThe matching problem is a cornerstone problem in combinatorial optimization.Despite the fact that no polynomially sized linear program for this problem isknown, polynomial algorithms exist for solving this problem. In these notes, weexamine a selection of these algorithms, ranging from augementing path algorithmsof the 1950s and 1960s to facet generation and randomized algorithms of the 1980s.While we concentrate on algorithms, it should be noted that there are manyapplications for the matching problem. Some include facility design [44], plot-ter movement [], crew scheduling [6], and machine scheduling [24]. Furthermore,matchings have been used as a subroutine for the traveling salesman problem[10], the chinese postman problem [18], and the set covering problem [46]. Thematching model is truely a useful model.In these notes, we concentrate on the various techniques for solving matchingproblems. In order to simplify the exposition of these techniques, we concentrateon a simple case: the cardinality matching problem, where our goal is to maximizethe number of edges in a matching. In the �nal sections we will examine theconceptually similar but more di�cult weighted matching problem.The following is an outline of the notes:(1) Bipartite matching, cardinality case. Augmenting path method, theoremsof Berge, Hall, and K�onig.(2) General matching, augmenting path algorithms. Algorithm of Edmonds,theorems of Tutte and Gallai and Edmonds.(3) Polyhedral structure, cut generation algorithms. Algorithms of Gr�otscheland Holland and Trick using results of Padberg and Rao.(4) Randomized/Parallel algorithms. Determinants, algorithm of Mulmuley,Vazirani, and Vazirani.(5) Weighted Matching. Algorithm of Edmonds.55

56 IV. MATCHINGS2. Bipartite MatchingsGiven a graph G = (V;E), M � E is a matching if every node in V is incidentto at most one member of M . A matching is perfect if every node is incidentto exactly one member. The maximum cardinality matching problem is to �nd amatching of largest size. We begin with the case G is bipartite with bipartition(S; T). The number of nodes of G is n, the number of edges m.Problem 1. Show that in this case, the cardinality matching problem is aspecial case of maximum
ow.Add two nodes s and t. Add edges of capacity 1 from s to every member of S, andedges of capacity 1 from every member of T to t. Set the capacity of every edge of Eto in�nity. A maximimum
ow in this graph corresponds to a maximum matching.Due to the simple structure of the graph and capacities, most maximum
owtheorems have simpler statements for the matching problem. The fundamentalconcept is that of augmenting path relative to a current matching M . An alter-nating path is a path in G where the edges are alternately in and not in M . Anaugmenting path is an alternating path where the endpoints are not incident toany member of M . If a node is incident to an element of M , we will say that thenode is matched. Similary, an edge is matched if it is in M . The following theoremis due to Berge.Theorem. M is a maximum matching if and only if there is no augmentingpath relative to M .Problem 2. Prove the above theorem directly (i.e. don't use knowledge aboutnetwork
ows).One direction is straightforward. If there is an augmenting path, simply reversing themembership in M along that path creates a matching of size one larger.Suppose M is the current matching and there is a larger matching M 0. Take thesymmetric di�erence of M and M 0. Since every node has degree at most 2 in thisgraph, this consists of alternating paths and cycles. Since M 0 is larger, there exists atleast one path that begins and ends with an edge of M 0. It is clear that the endpointsof the path are unmatched by M , so this is an augmenting path.In the bipartite case, this leads to an algorithm: Search for an augmentingpath, if found augment, otherwise terminate. The following algorithm searches foran augmenting path by �nding an alternating forest. A node in the forest if analternating path is found to it from an unmatched S node. It is marked either\odd" or \even" depending on the parity of the path length. Each component ofthe forest is rooted an an unmatched S node.0) (initialize) Mark each unmatched S node \even" and place into a queue Q.

2. BIPARTITE MATCHINGS 571) (grow forest) Remove the �rst member of Q, i. For each edge (i; j) 2 E, oneof the following cases is executed:(j unmarked, matched) Let k be the node j is matched with. Add (i; j) and(j; k) to the forest, mark j \odd" and k \even;" add k to Q.(j unmarked, unmatched) An augmenting path has been found between j andthe root of the component containing i. Augment along it.(j marked \odd") Do nothing.This algorithm stops either when the queue is empty or when an augmentingpath is found. In the �rst case, the current matching is optimal; in the second, anew alternating tree can be grown.Problem 3. Why can j not have the marking \even" in the case analysis?It follows by induction that \even" nodes are always S nodes and \odd" nodes are Tnodes. Furthermore, only S nodes are in Q, so j is a T node.Problem 4. Prove the correctness of the algorithm. What is the overall com-plexity of this algorithm?It follows by induction that if a node is marked, then there is an augmenting pathwith the correct parity. Therefore, a claimed augmenting path really is an augmentingpath. Suppose there is an augmenting path P that is not found by the algorithm whereP starts at an S node. Let i by the �rst node of P that is not marked, and let j be itspredecessor. If i is an S node, then (j; i) must be in the matching (by the de�nitionof augmenting path). But j is marked, and must be marked \odd" (since it is a Tnode). But a node is marked \odd" only if its matched node is marked even. So i isa T node. But then j is an S node and (i; j) is not in the matching, so i would bemarked when j reached the front of Q.Each edge is examined once per augmentation and there are at most n=2 augmenta-tions so the complexity is O(nm).Hopcroft and Karp [35] describe an implementation of this algorithm that re-quires overall time of just O(pnm). This algorithm (but not the complexity!) issimply Dinics' [15] algorithm applied to this case.The algorithm also provides an easy way to prove various structure theorems,which give conditions under which matchings can occur. For instance, the followingis due to Frobenius (1912). For X � S, let N(S) be the set of nodes connected toa member of X by at least one edge.Theorem. A bipartite graph G with partition (S; T) has a perfect matching if andonly if jSj = jT j and, for each X � S, jXj � jN(X)j.Problem 5. Prove the above theorem (one direction is straightforward, for theother direction, the violating X can be found from the �nal alternating tree).

58 IV. MATCHINGSIf the graph has a perfect matching, then clearly jSj = jT j. Also, if any set X has toosmall a neighborhood, then no matching is possible.If G has no perfect matching and jSj = jT j, then we must exhibit an X with toosmall a neighborhood. Let A be the set of vertices marked by the algorithm, and letX = S \ A. A matched i 2 S is marked only if its corresponding j is marked. Allother nodes incident to i are marked. By the initialization, all the nodes incident toan unmatched S node are marked. Therefore, T \ A = N(X). But every node inT \A is matched, so there is a unique corresponding element of X among the matchednodes. But there are unmatched elements of X, so jXj > jN(X)j, as needed.Another theorem by K�onig (1936) is particularly nice, for it provides a min{maxresult. A cover of the edges of G by nodes is a subset of nodes so that every edgeis incident to at least one member of the cover. Let � (G) denote the minimal nodecover of G.Theorem. If G is bipartite then the maximum number of edges in a matchingequals � (G).Problem 6. Prove the above theorem.Let �(G) be the size of a maximum matching. Let M be any matching and C be anycover. Every edge of M must be incident to at least one member of C and everymember of C is incident to at most one member of M . Therefore, jM j � jCj, so, inparticular, �(G) � � (G).Let M be a maximum matching. If M matches all elements of S then S is a coverof the same size as M . Otherwise, let A be the nodes marked by the algorithm. LetS0 = X \S and T 0 = X \T . Now T 0 are all matched, since M is maximum. Considerthe set X = (S�S0)[T 0. For any edge (i; j) either i or j is matched (by maximality).If i is matched, either i is not marked (so i 2 X) or i and j are marked (so j 2 X).If j is matched, then either it is marked (and in X) or not, in which case i is notmarked (so it is in X). Therefore X is a cover. Furthermore, for an edge (i; j) 2Meither i or j, but not both are in the cover, so jXj � jM j, as needed.According to the folklore, after the work of Berge and Norman and Rabin, thefeeling was that there was no more to do on matchings. Edmonds (1965) provedhow wrong they were.Problem 7. Adapt the algorithm for nonbipartite graphs. Where does thealgorithm fail?Where indeed? See next section.3. General MatchingsTo adapt the previous algorithm, we can no longer rely on the fact that S nodeswill be marked \even" and T nodes marked \odd." The following algorithm adapts

3. GENERAL MATCHINGS 59the bipartite algorithm as much as possible:0) (initialize) Mark each unmatched node \even" and place into Q.1) (grow forest) Remove �rst node of Q, i. For each edge (i; j) 2 E, executeone of the following cases:(j unmarked, matched) Let k be the node j is matched with. Add (i; j) and(j; k) to the forest, mark j \odd" and k \even;" add k to Q.(j \odd") Do nothing.(j \even," in di�erent component than i) An augmenting path has been foundbetween the roots of the two components. Augment along it.(j \even," in same component as i) ????It is in the last case that there is some problem. We have found an odd lengthaugmenting path to a node for which we previously found an even length aug-menting path. Two obvious solutions are to ignore the problem (give the node thelabel it �rst had) or to allow nodes to be labelled both odd and even, placing onlynodes with even labels in the queue.Problem 1. Show that these solutions will not work, the �rst because it missessome augmenting paths, the second because it identi�es some \paths" that arenot paths at all.Both of the counterexamples in the above problem rely on a cycle with an oddnumber of nodes where every node on the cycle except one is matched by edges ofthe cycle. Edmonds ([16]) showed that this construct (which he called a blossom)is the only construct that causes di�culty.Problem 2. Show that there is a blossom when the last case of the algorithmoccurs.Since both i and j are in the same component their paths back to the root must meetat some node k. The paths from k to i and from k to j must have the same parityand be alternating. Together with (i; j), this forms an odd alternating cycle.Edmonds' idea was to shrink the blossom into a single node. To shrink a blossomB, replace the nodes of the blossom by a single node b. If (i; j) is an edge in theoriginal graph, with i 2 B in the blossom and j =2 B, then create an edge (b; j).The key idea is that a blossom is hypomatchable: for every node k in the blossom,there is a matching within the blossom that hits every node except k. Edmondsproved the following theorem:Theorem. If B is a blossom of G with respect to M , then there is an augmentingpath in G if and only if there is an augmenting path in G with B shrunk.Problem 3. Prove the if part of this theorem.

60 IV. MATCHINGSLet P be the path in G with B shrunk. If the path avoids b, then it is a path in G. Ifit uses B, then either b is an endpoint or an intermediate point of the path. In the�rst case, let j be the node of B the path uses and let i be the unmatched node of B.There are two paths from j to i in B: one odd length and one even length (which maybe empty). The even length one added to the remainder of P is the augmenting path.Similarly, if it goes through B, one direction around the cycle will be the augmentingpath.Now, we complete our algorithm with the following case:(j \even," in same component as i) Identify the blossom and shrink it to asingle node.We call a shrunk blossom a pseudonode.Problem 4. Show that every blossom is an even node.The paths found by problem 2 meet in a node which is either the root or has degree atleast 3. In either case, the meeting node is an even node, so collapsing the cycle willresult in an even node.To prove the only if part of Edmonds theorem, it is easier to use duality andthe results of the algorithm. We de�ne an odd cover of a graph to be a collectionof odd sets so that for every edge eitheri) it is incident to a singleton of the cover, orii) both ends are contained in some odd set.We de�ne the size of an odd set to be 1, if the set is a singleton, and to be rif it has size 2r + 1 if it is a larger odd set. The size of a cover is the sum of thesizes of its sets.Problem 5. Show that every odd cover is at least as large as every matching.Each singleton is incident to at most one matching edge. Each larger set of size rcontains at most r matching edges. Therefore, the size of the set is at least the numberof edges in the matching.Problem 6. Suppose our algorithm ends without an augmenting path. Showthat the current matching is optimal.Form an odd cover as follows: take every odd node as a singleton; every outermostblossom as an odd set; and one arbitrary singleton from the unmarked nodes andthe remaining unmarked nodes in a single odd set. Every edge of G is either in ablossom, incident to an odd node, or has both its endpoints unmarked. Therefore, thiscollection of sets is an odd cover. It is straightforward to see that the size of this oddset is exactly the number of matching edges.Since we have a matching and an odd set with the same size, the matching must bemaximum (by problem 5).

3. GENERAL MATCHINGS 61Problem 7. Show that every augmenting path found by the algorithm is valid.An augmenting path is found when i and j are in di�erent components and are bothmarked even. Therefore, there is an odd alternating path between there correspondingroots (the even paths together with (i; j)). By problem 3, we can expand the blossomsto �nd an augmenting path in G.The time complexity of this algorithm depends on the data structures used tohandle the blossoms. A straightforward bound is O(n4). Lawler ([39]) and Gabow([25]) give implementations that reduce this to O(n3), and other implementationsreduce it further to O(nm). The adaptation of Dinics' algorithm done by Karp inthe bipartite case has been generalized by Even and Kariv ([21]) and Micali andVazirani ([43]) to give a O(pnm) bound.As in the bipartite case, this algorithm gives simple proofs of a number ofpreviously known structure theorems. We have already proved a min{max resultregarding odd covers �rst proved by Edmonds. Another theorem is by Tutte(1947). Let c(G) be the number of components of G with an odd number ofnodes.Theorem. G has a perfect matching if and only if c(G�S) � jSj for all S � V .Problem 8. Prove the above theorem.Since at least one node from every odd component must be matched to some memberof S, if G has a perfect matching then c(G� S) � jSj for all S.For the other direction, assume that G does not have a perfect matching. Let S beset set of nodes marked \odd" by the algorithm. Each even node or blossom forms acomponent of G � S. There are more even nodes and blossoms than odd nodes, soc(G � S) > jSj.Finally, an important theorem related to the set of all matchings of a graph isthe Gallai{Edmonds decompostion theorem. Let D(G) be the set of all nodes thatare not covered by at least one maximum matching of G. Let A(G) be the setof nodes adjacent to at least one element of D(G). Let C(G) be the remainingnodes. One crucial element of the Edmonds{Gallai stucture theorem is:Theorem. If M is any maximum matching of G, theni) within each component of D(G) it misses exactly one node,ii) it contains a perfect matching of C(G), andiii) every element of A(G) is matched with a node in distinct components ofD(G).We can identify these sets directly from the algorithm: D(G) are those nodesmarked \even" or those within blossoms, A(G) are those marked \odd," and C(G)are those not marked by the algorithm. To prove this, we would have to show thata node is marked even or in a blossom if and only if it is unmatched by somemaximum matching.

62 IV. MATCHINGSProblem 9. Prove the only if part (i.e. if it is marked even or in a blossom,then it is unmatched by some maximum matching).Every tree can be rerooted at any even node, leaving that node or blossom unmatched.Every node within a blossom can be unmatched by hypomatchability.For the if part, see the text by Lov�asz and Plummer [41].4. Cut GenerationRead [34].In the previous section, we saw an augmenting path algorithm for the cardinalitymatching problem. In the next two sections, we will examine radically di�erent al-gorithms for this problem: a cut generation approach and a randomized algorithmbased on taking determinants.The cut generation approach attempts to treat the matching problem as a linearprogram. First we need to �nd a suitable formulation. We begin with the mostobvious constraints, the requirement that at most one edge be incident to eachnode. The problem becomes: Maximize XxijXfj:fi;jg2Egxij � 1 for all i(3) xij � 0(4)Problem 1. Prove that this formulation is not su�cient to de�ne the matchingproblem.The triangle provides such a counterexample.Another obvious constraint, motivated by the blossoms of the augmenting pathalgorithm, is that no odd set can be perfectly matched by itself. In other words:Xfi;jg2E:i2S;j2S xij � (jSj � 1)=2 for all S � V; S odd:(5)Problem 2. Prove that adding these constraints is su�cient to de�ne thematching problem.The dual of (1), (2), and (3) is simply the odd cover problem. Since the constraintsare valid, this proves that they su�ce.

4. CUT GENERATION 63Unfortunately, there are an exponential number of constraints of type (3). Itis not known if there is a formulation of the matching problem that has only apolynomial number of constraints.It is possible to use the ellipsoid algorithm to solve the matching problem usingthe above constraints. The ellipsoid algorithm requires a separation algorithm:given a point y, determine if y is in the polytope and, if not, give a violatedconstraint. It is straightforward to provide separation routines for constraints (1)and (2). It is not obvious how to �nd a violated constraint of type (3). Padbergand Rao [51] provide an algorithm for this problem. For any y satisfying (1) and(2) they give an algorithm that will decide if y satis�es (3), and, if not, will givean S whose corresponding constraint is violated.Suppose we have a fractional solution y for G = (V;E). We create an auxilliarygraph G0 as follows: beginning with G, we place a capacity on each edge equal toyij. We then add a node (the slack node) to the graph and edges between eachnode and the the new node. These edges represent the slack variables and havecapacity equal to the value of the corresponding slack variable.Problem 3. Show that a violated constraint is exactly an odd set in G0 notcontaining the slack node where the edges leaving the set have total capacity lessthan 1.Suppose we have a violating jSj. The amount on the edges within jSj is more than(jSj � 1)=2. But, by the constraints (2), this means the amount leaving S is less thanjSj � 2(jSj � 1)=2 � 1.For the other direction, suppose we �nd an S not including the slack node with valuek leaving it. The amount within it must be no more than (jSj � k)=2. Therefore, ifk < 1 then S corresponds to a violated inequality.The problem becomes �nding an odd set with the minimum capacity leavingit. If the problem was merely to �nd a set with minimum capacity leaving it, wecould solve this by standard maximum
ow techniques.Problem 4. Give an algorithm for �nding a set with minimum capacity leavingit (hint: solve O(n2) maximum
ow problems).Simply �nd the minimum cut between every two pairs of nodes and choose the mini-mum cut.Gomory and Hu [33] give a faster algorithm for problem 4 using only O(n)maximum
ow calculations. The idea is to create a cuttree for the graph. Acuttree is a tree that represents the minimum cuts for all pairs of nodes in anundirected graph. Each are of the tree has a label; to �nd the minimum cutvalue between to nodes, �nd the minimum label on the unique path between themin the tree. Removing the minimum edge breaks the tree into two pieces whichcorresponds to the partition of the nodes to give the cut value.

64 IV. MATCHINGSThe Gomory and Hu algorithm is as follows:0) Place all nodes in a single group.1) Choose two nodes in a group. Contract all other groups; �nd a maximum
ow between the two nodes.2) Use the cut to divide the group into two smaller groups, adding an edge of thecuttree between them. If there is no group of size at least 2, then stop. Otherwisego to step 1.Padberg and Rao show that it is possible to �nd an odd cut by forming thecuttree as above. The minimum odd cut corresponds to the minimumweight edgeof the cuttree whose removal leaves a component with an odd number of nodes(not counting the slack node). It is clear that such an edge corresponds to an oddcut. It is not so clear that it gives the minimum odd cut. Let C be an optimalodd cut and let (S; S0) be the bipartition of nodes induced by the cut. Let T bethe cuttree generated. Examine the edges T 0 � T that correspond to odd cuts inT . Clearly, every node in the tree is incident to at least one member of T 0 andthe degree of T 0 at each node is odd. Now examine the nodes corresponding toS in T 0. Since S has an odd number of nodes, there must be an edge in T 0 fromsome element of S to an element in S0. This edge is the minimum cut C 0 betweenits endpoints, so the size of C 0 is less than or equal to the size of C. But, by thede�nition of T 0, C 0 is an odd cut, so it is a minimum odd cut.This gives an algorithm for matching: Use the ellipsoid algorithm and the sep-aration routines given. Gr�otschel and Holland ([34]) replace the ellipsoid methodwith the simplex algorithm to give a cut generation technique similar to that usedfor the traveling salesman problem. The algorithm has an exponential worst casebound but may work well in practice. The algorithm is:0) Create a linear program with constraints (1) and (2).1) Solve current linear program. If solution is integer, the solution is optimal.Otherwise proceed to step 2.2) Generate violated constraint(s) and add to linear program. Go to step 1.Creating the modi�ed cuttree is a very expensive operation. Gr�otschel andHolland provide some heuristics for �nding violated inequalities. Only if theseheuristics fail do they resort to the cuttree.Problem 5. Give a very quick algorithm to determine if there is an odd setwith capacity 0 out of it.Delete all edges with capacity 0 in G0. An odd size connected component correspondsto an odd set with 0 leaving it.Trick ([60]) suggests replacing the simplex code with a generalized network with

5. DETERMINANTS AND A RANDOMIZED ALGORITHM 65side constraints code. This code works very well provided relatively few constraintsare generated.Everything in this section applies to the weighted matching problem. The com-putational results of Gr�otschel and Holland and Trick suggest that cut generationtechniques may be comparable in speed to augmenting path techniques. There aremany more advantages. The generalization to b{matching is straightforward, asopposed to the more complicated combinatorial algorithm. The linear relaxationof matchings with side constraints can be solved routinely, without resorting tolagrangian relaxation or other techniques. The main disadvantages are stabilityand pathological slowness. An edge in a combinatorial approach is either in or notin the matching. A value of 0.99 in a cut generation approach is more problemat-ical: is it really 1, and the L.P. had round o� errors, or is it really 0.99? Finallyit must not be forgotten that these methods might generate a very large numberof constraints. While the randomly generated problems tested on do generate fewconstraints, real problems may require more and may be harder to solve.5. Determinants and a Randomized AlgorithmRead [45].The next method for solving matchings reveals a somewhat surprising relation-ship between matching and determinants. These algorithms have a very di�erentfeel from the previous algorithms. We begin with the bipartite case.Consider the matrix A, where aij = 1 if (i; j) 2 E and 0 otherwise. Let det(A)denote the determinant of A.Problem 1. Suppose G has no perfect matching. What is det(A)? Whatif G has a perfect matching? Suppose for some G, det(A) = 5. What can youconclude? What if G has a unique perfect matching?Let � denote a permutation of 1; : : : ; n. The de�nition of determinant is det(A) =P� sign(�)�iai;�(i). Each term corresponds to a possible perfect matching. The termwill be nonzero if and only if each entry is nonzero. This occurs exactly when thecorresponding edges are in the graph. Therefore, if G has no perfect matching, thedeterminant is 0. If it does have a perfect matching, it may be zero (due to cancellationof terms) or it may not. If it is nonzero, then it de�nately has a perfect matching.Finally, if G has a unique perfect matching, then the determinant will be nonzero.So, taking determinants does not provide a characterization of graphs withmatchings. We can give a characterization by replacing the entries in A withindeterminates. Let aij = xij if (i; j) 2 E and 0 otherwise, where xij are indeter-minates.Problem 2. Now what is the relationship between det(A) and whether or notG has a perfect matching? What is a drawback of this approach?

66 IV. MATCHINGSIn this case, since di�erent terms involve di�erent variables, no cancellation can oc-cur. Therefore, the determinant is nonzero if and only if G has a perfect matching.Unfortunately, the determinant may have an exponential number of terms.Instead of using indeterminates (which require an exponential amount of time)or 1s (which tend to cancel too much), we will use entries for A drawn at randomfrom the range f1; : : : ; Ng. It is possible for the terms to cancel, but it is highlyunlikely. Schwartz ([54]) shows that the probability is at most (2=N)jEj.Problem 3. Given a 1000 edge graph, suppose 100 sets of numbers in the rangef1; : : : ; 2000g are generated and the corresponding determinant is 0 in all cases.What is the probability that G has a perfect matching?For each set, if G had a perfect matching, the probability the determinant is zero isat most :0011000 = 10�3000. Therefore, the overall probability is 10�300000 (which ispretty darn small).To extend this to the nonbipartite case, we need a somewhat more complicatedmatrix. For (i; j) 2 E, we will de�ne aij = xij if i < j, and aij = �xij if i > j. If(i; j) =2 E then aij = 0. The following theorem is more di�cult than the bipartitecase (the problem is that since each variable appears twice, there are opportunitiesfor cancelation):Problem 4. Show that det(A) = 0 if and only if G has no perfect matching.For each permutation � of 1; : : : ; n, de�ne v(�) = �iai�(i). Det(A) = P� sign(�)v(�).Thus v(�) 6= 0 if and only if (i; �(i)) 2 E for all i.Now, create an auxilliary graph on V . For a permutation �, add the edges (i; �(i))for all i. Clearly each node has degree 2 (possibly due to two edges (i; j)). Matchingscorrespond exactly to those � that have no cycles with more than two edges. Supposethere is an odd cycle for �. There is another �0 that is identical to sigma except ittraverses the edges in the reverse direction. It is easy to show that v(�) = �v(�0) sothese cancel in determining the determinant.Therefore, the only terms that contribute towards the determinant have no odd cycles.But any graph with even cycles of length greater than 2 are simply unions of matchings.Therefore, if the determinant is nonzero, then there is a perfect matching. To showthe converse, simply note that a perfect matching uniquely gives the �, so it cannotbe cancelled out, so a graph with a perfect matching has nonzero determinant.Again, if we replace the indeterminates with numbers in the range f1; : : : ; Ngthen the probability of a nonzero (indeterminate) determinant equaling 0 is atmost (2=N)jEj. This gives a probabilistic algorithm that will determine if a graphhas a perfect matching with arbitrarily high probability. It is only slightly moredi�cult to �nd such a matching (again with very high probability).

5. DETERMINANTS AND A RANDOMIZED ALGORITHM 67Problem 5. Give an algorithm to �nd a perfect matching in a graph if oneexists.Con�rm that G has a perfect matching. For each edge (i; j) determine if G � (i; j)has a perfect matching. If so, then delete (i; j) and continue. Otherwise, place (i; j)in the matching and continue. After m attempts, the edge set is exhausted.One very interesting reason for examining this algorithm is its ability to becomputed in parallel. Imagine a computer with K processors, solving a problemwith an O(F) algorithm. Ideally, this computer would solve these problems in timeO(F=K). This is optimal speedup. Most algorithms do not have known optimalspeedups for any K. Consider the following variant. Suppose we allow a computerto have any number of processors polynomial in the size of the problem. How fastcan the computer solve the problem? For an NP{Complete problem it is clear thatthe computer cannot solve it in polynomial time (by any known algorithm). Fora problem in P , it clearly requires at most polynomial time. The interesting casesare those that require less time: either logarithmic time or constant time. Very fewof the latter class are known, so researchers have concentrated on algorithms thatrequire time that is polynomial in the logarithm of the size of the problem. Theclass of problems solvable in polylog time is called Nick's Class or NC for short.The class of problems that is probabilistically likely to give a correct answer isRandom NC (RNC).Some examples of problems in NC are �nding maximal independent sets, �ndinga depth �rst search path, two processor scheduling, and, most important to us,�nding the determinant of a matrix and inverting a matrix ([52]). Together withthe above argument, this shows that determining whether or not a graph has aperfect matching is in RNC. Unlike the case for sequential algorithms, however,the search and decision problems for parallel algorithms do not seem to be directlyequivalent.Problem 6. Can the algorithm given in problem 5 be run in parallel?I don't think so.To �nd a perfect matching in parallel requires a much more complicated algo-rithm. The algorithm presented here is due to Mulmuley, Vazirani, and Vazirani([45]). Another algorithm is found in [38].First note that if G has at most one perfect matching then there are no possi-bilities for cancellation. This algorithm extends this to a weighted case and showsthat if a graph has a unique minimum weighted perfect matching then the deter-minant of a related matrix is nonzero. Suppose we have a graph with weights wijon each edge. Create the matrix A as above replacing the indeterminates xij withthe value 2wij .Problem 7. Suppose G has a unique minimum weight perfect matching with

68 IV. MATCHINGSweight w. Show that det(A) 6= 0 and that the highest power of 2 which dividesdet(A) is 22w. (This modi�es the proof of problem 4.)Using the same auxilliary graph as in problem 4, it is easy to see that any � withan odd cycle is still cancelled out. Now examine the permutation associated with anyminimum matching M with weight w. Its value is �22w. We need to show that anyother permutation has a higher value. Certainly this is true for any non{minimummatching. Examine a permutation associated with even cycles. This can be seen to bethe union of two matchings, at least one with weight more than w, so that term hasvalue more than 22w.This gives a quick method for determining the weight of the optimal matching:simply �nd the largest w so that 22w divides the determinant.The same argument su�ces to give a characterization of which edges are in theunique minimum perfect matching. Let Aij be the minor of A with the ith rowand jth column removed.Problem 8. Show that (i; j) is in the unique minimummatching if and only if(det(Aij)2wij)=22w is odd.Notice that det(Aij)2wij = X�:�(i)=j sign(�)v(�).Examining the auxilliary graph, if there is an odd cycle, there is one that avoids (i; j),so the cancellation argument in problem 7 still holds.If (i; j) is in the minimum weight matching, then there is a term with value �22w andall other terms have higher values. On the other hand, if it is not in the minimumweight matching all terms have higher values. Therefore, the statement follows.The �nal step is to assign weights to an unweighted graph so that it containsa unique minimum weight matching. Suppose we assign weights uniformly andindependently from f1; : : : ; 2jEjg.Problem 9. Show that the probability there is a unique minimummatching is� 1=2.

5. DETERMINANTS AND A RANDOMIZED ALGORITHM 69This is a nice probabilistic proof. Fix the weights of all elements except some (i; j).For that (i; j), there is a value � such that if wij > � then (i; j) is in no minimumweight matching. Clearly, if wij < � then it is in every minimum weight matching.It is only if wij = � that there is a minimum weight matching that contains it andanother that does not. We call such an element ambiguous. Note that this argument isindependent of wij, so the probability that (i; j) is ambiguous is exactly the probabilitythat wij = � which is � 1=2n. Therefore, the probability there is an ambiguous edgeis � n=2n = 1=2. This is equal to the probability that there is not a unique minimummatching.The problem of determining all the numbers required can be done in parallel bythe algorithm of Pan [52]. This gives an algorithm that requires time O(log2m)with O(n3:5m) processors. This shows that �nding a perfect matching is in RNC.Some corollaries of this theorem are that the following are in RNC:� constructing a maximum cardinality matching,� constructing a matching in a graph with weighted vertices that covers a setof maximum weight (with weights in binary),� �nding a maximum
ow in a directed graph with edge weights given inunary.In contrast, the maximum
ow problem with binary weights is complete for P(with a suitable de�nition of completeness). Showing it in RNC would imply thatevery problem in P is in RNC, a fairly unlikely possibility.This algorithm is aMonte Carlo algorithm: it always returns an answer, but theanswer may be wrong. A Las Vegas algorithm recognizes when it has the correctanswer, so it either returns a correct answer, or it returns \failure" (it should beclear that any Las Vegas algorithm can be turned into a Monte Carlo algorithm).Karlo� ([36]) gives a method for transforming any Monte Carlo algorithm formatching into a Las Vegas algorithm. Not surprisingly, it uses duality.Recall from the Gallai{Edmonds theorem that the size of a maximummatchingin a graph is related to the set of all nodes missed by at least one maximummatching (D(G)) and its neighbor set (A(G)). The size of a maximum matchingis (jV j+jAj�c(D))=2 where c(D) is the number of odd components in the subgraphinduced by D. Therefore, if we identify D(G) we can �nd the size of a maximummatching. We also know that the size of a perfect matching is always less than orequal to (jV j+ jSj � c(V � S))=2 for any S implies that if we misidentify D thenwe get an upper bound on the size of a maximum matching.Problem 10. Give a parallel algorithm to �nd D supposing you have analgorithm that �nds a maximum matching with probability at least 1 � 1=2n.What is the probability of it �nding an incorrect answer?

70 IV. MATCHINGSFor each node v, determine if the graph G � v has the same size matching as G.If so, place v in D, otherwise not. The probability of our oracle giving at least onewrong answer is at most (n + 1)2�n, so the probability of getting the correct D is1 � (n + 1)2�n.This gives a Las Vegas algorithm: Run the above algorithm and the matchingalgorithm given in parallel. If they agree on the answer, return it. Otherwisereturn \failure."Finally, consider the exact matching problem: each edge of the graph is coloredeither red or blue and an integer k is given. The problem is to �nd a perfectmatching with exactly k red edges. No deterministic polynomial algorithm isknown for this problem, but it is easy to modify the above algorithm to solve it inrandom logarithmic time. According to all the assumptions about class inclusions,this should imply that there is a polynomial algorithm for this problem.6. Weighted MatchingWe have seen three di�erent methods for the cardinality matching problem:augmenting paths, cut generation, and determinants. In this section we discussgeneralizing these methods for the case where each edge has a weight and theobjective is to maximize the total weight of the matching. We begin with anaugmenting path algorithm due to Edmonds ([16, 17]).We have a linear programming formulation for the cardinality case (see sec-tion 4). We have not yet proved that this formulation is su�cient for the generalcase. Again, we will prove the su�ciency by giving an algorithm that gives bothprimal and dual solutions. The primal problem is toMaximize X cijxijXfj:fi;jg2Egxij � 1 for all i(6) Xfi;jg2E:i2S;j2S xij � (jSj � 1)=2 for all S � V; S odd:(7) xij � 0(8)With the dual variables associated with 6 be u and those associated with 7 bew, the dual is

6. WEIGHTED MATCHING 71Minimize Xi ui +XS rSwSui + uj + XfS:i;j2SgwS � cij(9) u;w � 0(10)where rS is (jSj � 1)=2.There are two ways to show that a primal and a dual solution are optimal: eithershow their costs are the same, or show that they satisfy complementary slackness.We adopt the second method here. The complementary slackness conditions are:xij > 0) ui + uj + XfS:i;j2SgwS = cij(11) ui > 0) Xfj:fi;jg2Egxij = 1(12) wS > 0) Xfi;jg2E:i2S;j2S xij = rS(13)In this algorithm, we always have a primal feasible solution and a dual feasiblesolution. These solutions will satisfy 11 and 13. As soon as they also satisfy 12then we terminate.Problem 1. Give primal and dual feasible solutions that satisfy everythingexcept 12.The primal solution is xij = 0 for all i; j. Set wS = 0 for all S and ui = 1=2c� wherec� is the maximum cost in the graph.To ensure that 11 is satis�ed, we will only do augmentations in the equality{constrained subgraph: those arcs that satisfy 9 with equality. All edges outside ofthis subgraph will be set to zero. To ensure 13 we will only assign postive w valuesto odd sets that are shrunk in the current graph.Given a current pair of solutions, there are two ways to satisfy 12 at a node:either the node becomes adjacent to a matching edge (by augmenting from it) or itsdual u is decreased to zero. We create the alternating forest from the unmatchednodes using only edges in the equality{constrained subgraph (perhaps shrinkingblossoms along the way). Either an augmenting path is found or we will be able to

72 IV. MATCHINGSdecrease the duals on the unmatched nodes keeping primal and dual feasibility aswell as 11 and 13. Let's begin by seeing how this dual change can be done. Supposewe decrease the duals of all the unmatched nodes by �. Let the alternating forestbe F .Problem 2. What to we have to do to the duals of nodes next to an unmatchednode in F to satisfy 9? What about those next to them? In general, what do wehave to do to the duals of nodes based on their label odd or even? What aboutunlabeled nodes?We must increase the duals next to the unmatched nodes, then decrease the next layerof nodes and so on. Every even node (or node in an even pseudonode) has its nodesdecreased by � and every odd node (or node in an odd pseudonode) is increased by �.Unlabelled nodes are not changed.It turns out that even nodes, or nodes contained in pseudonodes marked evenhave their duals decreased by �. Odd nodes, or those in odd pseudonodes, areincreased by �. This has a bad e�ect on edges completely within a shrunk blossom.Fortunately, we can modify the w values to o�set this.Problem 3. How can the w values be changed to keep 9 for edges within ablossom?The dual for odd blossoms can be decreased by 2� and that for even blossoms increasedby 2�.We still have to �nd �. As we change the duals we must be certain that we donot violate dual feasibility.Problem 4. There are four possibilities for violating dual feasibility. What arethey?We decrease duals in two cases: the u for even nodes (by �) and the w for odd blossoms(by 2�). Neither of these values can go negative. An edge between two even nodesin di�erent blossoms has its reduced cost decreased by 2� and this cannot go belowcij. Finally, an edge between an even node and an unlabeled node has its reduced costdecreased by � and it also cannot go below cij.This gives an algorithm for doing the dual change. Simply calculate the largest� that keeps dual feasibility. After the dual change we expand all blossoms withwS = 0. Those with wS > 0 are not expanded. This implies that shrunk blossomsmay end up later as odd nodes.As new edges are added to the graph it may be that an edge is added betweentwo even nodes. If the endnodes are in di�erent trees then an augmentation canbe made; otherwise a blossom can be shrunk. After this, the forest can be retainedand the search for an augmenting path resumed.

6. WEIGHTED MATCHING 73The algorithm is as follows:0) Find a primal and dual feasible solution that satisfy 11 and 13.1) Create an alternating forest in the equality{constrained subgraph. If anaugmenting path is found, go to step 2. Otherwise go to step 3.2) Augment along the path. Expand all blossoms with wS = 0. If ui = 0 for allunmatched nodes then stop. Otherwise go to step 1.3) Change the dual solution using the calculations above. If ui = 0 for allunmatched nodes then stop. Otherwise add edges to the equality constrainedsubgraph. If an edge is added between two even nodes in di�erent componentsthen go to step 2. If an edge is added between two even nodes in the samecomponent then shrink the blossom. Go to step 1, continuing from the currentalternating forest.Problem 5. Show that 11 and 13 are satis�ed after an augmentation.Since we only augment on the equality{constrained subgraph, 11 must be satis�ed. For13 not to be satis�ed, we must augment through a set S with wS > 0. But in thatcase, S is a pseudonode, so after augmenting rS edges of it are used.Problem 6. Show that the dual change is nondegenerate (� > 0).We will show that each of the four bounds must not be zero.We know that at least one unmatched node has dual > 0 (since there is such anunmatched node). But it must always have been unmatched. Furthermore, since webegan with each node having the same dual, an unmatched node must have the lowestdual value of all nodes (decreases happen only to even nodes and an unmatched nodeis always even). Therefore, all even nodes have dual > 0.We decrease blossom duals only if the blossom is odd. But an odd blossom cannot beformed this iteration, so it must have been formed at a previous augmentation. Thenits w value must have been > 0 (or else we would have expanded it.For an edge with two even endnodes, if its 9 value was at equality then it wouldbe in the equality{constrained subgraph so would give rise to either a blossom or anaugmenting path. Therefore such an edge between two blossoms is not in the equality{constrained subgraph, so � > 0.Similary an edge between an even node an an unlabeled node cannot be in the equality{constrained subgraph, so � > 0.Problem 7. Show that 11 and 13 are satis�ed after a dual change.This is a tedious case analysis, but follows directly from our argument for how tochange the duals.The only other point to prove is that the algorithm eventually terminates. Itis clear that no more than n=2 augmentations can be done. We can bound thenumber of dual changes between augmentations.

74 IV. MATCHINGSProblem 8. Show that the number of dual changes between augmentationsis O(n). (Hint: consider the ways � is bounded and show that each way cannotoccur too often).Consider the four bounding cases.If we ever are bound by the dual of an even node, all unmatched nodes must get dual0, so we terminate.If we are bound by an odd pseudonode, then we expand that pseudonode. We do notcreate new odd pseudonodes until we augment and there are O(n) odd pseudonodes,so this case can occur only O(n) times.If we are bound by an edge with two even endnodes, we either augment or shrink ablossom. Since we do not expand even pseudonodes until after augmentation, thiscase can occur only O(n) times.If we are bound by an edge from an even node to an unlabeled node we add that nodeto the alternating tree. After O(n) such additions, there are no more nodes to add.Overall, there are O(n) dual changes.Problem 9. What is the complexity of this algorithm?Between dual changes, O(m) work must be done, so the total time is O(n2m).This algorithm shows a number of very important points: the constraints 6, 7,and 8 are su�cient to de�ne the matching polytope. Since these are the sameconstraints as we used in section 4 for cut generation this implies that all theresults there hold just as well for weighted matching.There are a number of programming tricks known to make this algorithm moree�cient. Lawler ([39]) gives an O(n3) implementation. The fastest known imple-mentation is that of Ball and Derigs ([7]), who have a very nice examination ofvarious strategies for implementing matching algorithms.No determinant technique for weighted matching is known. A parallel imple-mentation is very unlikely (unless the weights are given in unary), although noconjectured class inclusions preclude it.7. Generalizations of MatchingsThere are a number of generalizations of matchings. In this section we willexamine the capacitated b{matching problem, a very powerful generalization.We begin with the uncapacitated b{matching problem. In the previous sections,we examined the problem of �nding a set of edges so that no node is adjacentto more than one edge. Suppose there is an integer bi associated with each nodei. A natural generalization is to assign integer values to the edges so that thetotal on the edges incident to node i is no more than bi for all nodes. This isthe uncapacitated b{matching problem. The problem examined in the previoussections has bi = 1 for all i so is termed the 1{matching problem.

7. GENERALIZATIONS OF MATCHINGS 75Problem 1. Show that the uncapacitated b{matching problem can be reducedto the 1{matching problem. Is this a polynomial reduction?Replace each node i with bi copies. For each arc (i; j) create an arc from each copyof i to each copy of j.It is also possible to insist that some or all of the nodes have values totalingexactly bi next to it (the relationship is exactly the same as that between perfectand nonperfect matchings).Although the reduction is not polynomial, it is possible to examine how a 1{matching algorithm works on this graph and modify it to solve b{matchings. See,for example, Pulleyblank ([53]) and Anstee ([5]).Another variant is to place upper bounds on the values that can be assigned toeach edge. If every upper bound is 1, then the problem is called the b{factor, orf{factor problem; arbitrary capacities result in the capacitated b{matching problem.Again, this is just 1{matching in disguise (provided a psuedopolynomial reductionis allowed).Problem 2. Show that the capacitated b{matching problem can be reduced tothe 1{matching problem.Replace each edge (i; j) with capacity u(i; j) with a path of three edges (i; k), (k; k0),(k0; j). Let the b(k) = b(k0) = c(i; j) and insist that k and k0 have values exactlyc(i; j) incident to it. The edges (i; k) and (k0; j) must be given the same value, andthat value must be less than or equal to c(i; j). This gives the value of (i; j) in theoriginal graph.Again, the 1{matching algorithms can be streamlined on these special graphsto lead to polynomial algorithms.

76 IV. MATCHINGS

Bibliography[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, \Network
ows," Sloan W.P. No. 2059{88,Sloan School of Management, M.I.T., Cambridge, MA (1988).[2] R.K. Ahuja and J.B. Orlin, \A fast and simple algorithm for the maximum
ow problem,"Sloan W.P. No. 1905{87, Sloan School of Management, M.I.T., Cambridge, MA (1987).[3] R.K. Ahuja and J.B. Orlin, \Improved primal simplex algorithms for shortest path, as-signment and minimum cost
ow problems," Sloan W.P. No, 2090{88, Sloan School ofManagement, M.I.T., Cambridge, MA (1988).[4] R.K. Ahuja, J.B. Orlin, and R.E. Tarjan, \Improved time bounds for the maximum
owproblem," Sloan W.P. No. 1966{87, Sloan School of Management, M.I.T., Cambridge, MA(1988).[5] R.P. Anstee, \A polynomial algorithm for b{matchings: an alternative approach," Univer-sity of Waterloo Research Report CORR 83{22 (1983).[6] M.O. Ball, L. Bodin and R. Dial, \A matching based heuristic for scheduling mass transitcrews and vehicles," Transportation Science, 17, 4{31 (1983).[7] M.O. Ball and U. Derigs, \An analysis of alternative strategies for implementing matchingalgorithms," Networks, 13, 517{550 (1983).[8] F. Barahona and �Eva Tardos, \Note on Weintraub's minimimum cost
ow algorithm,"manuscript (1988).[9] D.P. Bertsekas, \Distributed asynchronous relaxation methods for linear network
ow prob-lems," Lab. for Decision Systems LIDS{P{1986, M.I.T., Cambridge, MA (1985).[10] N. Chisto�des, Graph Theory | An Algorithmic Approach, Academic Press, London(1975).[11] D. Conradt and U. Pape, \Maximales Matching in Graphen," in H. Sp�ath, Ausgew�ahlteOperations Research in FORTRAN, Oldenbourg, M�unchen (1980).[12] W.H. Cunningham, \A network simplex method,"Mathematical programming, 11: 105{116(1976).[13] W.H. Cunningham, \Theoretical properties of the network simplex method,"Mathematicsof Operations Research, 4:196{208 (1979).[14] U. Derigs, Programming in networks and graphs, Lecture Notes in Economics and Mathe-matical Systems 300, Springer{Verlag, Berlin (1988).[15] E.A. Dinits, \Algorithm for solution of a problem of maximal
ow in a network with powerestimation," Soviet Math. Dokl., 11, 1277{1280 (1970).77

78 BIBLIOGRAPHY[16] J. Edmonds, \Paths, trees, and
owers," Canadian Journal of Mathematics, 17, 449{467(1965).[17] J. Edmonds, \Maximummatching and a polyhedron with 0{1 vertices," Journal of Researchof the National Bureau of Standards, 69B, 125{130 (1965).[18] J. Edmonds and E.L. Johnson, \Matching, euler tours, and the chinese postman," Mathe-matical Programming, 5, 88{124 (1973).[19] J. Edmonds and R.M. Karp, \Theoretical improvements in algorithmic e�ciency for ne-towrk
ow problems," Journal of the Association for Computing Machinery, 19, 248{264(1972).[20] J. Elam, F. Glover, and D. Klingman, \A strongly convergent primal simplex algorithm forgeneralized networks," Mathematics of Operations Research, 4:39{59 (1979).[21] S. Even and O. Kariv, \An O(n2:5) algorithm for maximum matching in general graphs,"Proc. 16th Annual Symposium of the Foundations of Computer Science, 100{112 (1975).[22] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton Unversity Press, Princeton,N.J. (1962).[23] A. Frank, \Finding feasible vectors of Edmonds{Giles polyhedra," Journal of CombinatorialTheory, Series B, 36, 221{239 (1984).[24] M. Fujii, T. Kasami, and K. Ninomiya, \Optimal sequencing of two equivalent processors,"SIAM Journal of Applied Mathematics, 17, 784{789 (1969).[25] H. Gabow, \An e�cient implementation of Edmonds' algorithm for maximum matchingson graphs," Journal of the ACM, 23, 221{234 (1975).[26] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan, \A fast parametric maximum
ow algorithm,"LCSR{TR{95, Laboratory for Computer Science Research, Rutgers University, Rutgers, NJ(1987).[27] A.V. Goldberg, S.A. Plotkin, �E. Tardos, \Combinatorial algorithms for the generalizedcirculation problem," MIT/LCS/TM{358, Laboratory for Computer Science, MIT, Cam-bridge, MA (1988).[28] A.V. Goldberg and R.E. Tarjan, \A new approach to the maximum
ow problem," Pro-ceedings of the Eighteenth Annual ACM Symposium on the Theory of Computing (1986).[29] A.V. Goldberg and R.E. Tarjan, \Solving minimum{cost
ow problems by successive ap-proximation," Proc. 19th ACM Symposium on the Theory of Computing, 7{18 (1987).[30] A.V. Goldberg and R.E. Tarjan, \Finding minimum{cost circulations by canceling negativecycles," Proc. 20th ACM Symposium on the Theory of Computing, 388{397 (1988).[31] D. Goldfarb and J. Hao, \A primal simplex algorithm that solves the maximum
ow prob-lem in at most nm pivots and O(n2m) time," Department of Industrial Engineering andOperations Research, Columbia University, New York (1988).[32] D. Goldfarb, J. Hao, and S. Kai, \Anti{stalling rules for the network simplex algorithm,"Department of Industrial Engineering and Operations Research, Columbia University, NewYork (1987).[33] R.E. Gomory and T.C. Hu, \Multi{terminal network
ows," SIAM Journal of AppliedMath., 9, 551{556 (1961).[34] M. Gr�otschel and O. Holland, \Solving matching problems with linear programming,"Mathematical Programming, 33, 243{259 (1985).[35] J.E. Hopcroft and R.M. Karp, \An n5=2 algorithm for maximum matching in bipartitegraphs," SIAM Journal of Computing, 2, 225{231 (1973).[36] H. Karlo�, \A randomized parallel algorithm for the odd set cover problem," Combinator-ica, 6, 387{391 (1986).

BIBLIOGRAPHY 79[37] R.M. Karp, \A characterization of the minimum cycle mean in a digraph," Discrete Math-ematics, 23, 309{311 (1978).[38] R.M. Karp, E. Upfal, and A. Wigderson, \Finding a maximummatching is in random NC,"Seventeenth Annual Symposium on the Theory of Computing, 22{32 (1985).[39] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt Reinhart and Win-ston, New York (1976).[40] E.L. Lawler and C.U. Martel, \Computing maximal polymatroidal
ows," Mathematics ofOperations Research, 7, 334{347 (1982).[41] L. Lov�asz and M.D. Plummer, Matching Theory, North Holland, New York (1986).[42] V.M. Malhotra, M. Pramodh Kumar, and S.N. Maheshwari, \An O(V 3) algorithm for�nding maximum
ows in networks," Information Processing Letters 7, 277{278 (1978).[43] S. Micali and V.V. Vazirani, \An O(pV E) algorithm for �nding maximum matching ingeneral graphs," Proc. 21st Annual Symposium on the Foundations of Computer Science,17{27 (1980).[44] B. Montreuil, H.D. Ratli�, and M. Goetschalckx, \Matching based interactive facility lay-out," IEE Transactions (1988).[45] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani, \Matching is as easy as matrix inversion,"Combinatorica, 7, 105{113 (1985).[46] G.L. Nemhauser and G. Weber, \Optimal set partitioning, matchings, and lagrangian re-laxation," Naval Research Logistics Quarterly, 26, 553{563 (1979).[47] K. Onaga, \Dynamic programming of Oprimum
ows in lossy communications nets," IEEETransactions on Circuit Theory, 13:282{287 (1966).[48] J.B. Orlin, \On the simplex algorithm for networks and generalized networks," Mathemat-ical Programming Studies, 24:166{178 (1985).[49] J.B. Orlin, \A faster strongly polynomial minimum cost
ow algorithm," Proc. 20th ACMSymposium on the Theory of Computing, 377{387 (1988).[50] J.B. Orlin and R.K. Ahuja, \New distance{directed algorithms for maximum
ow and para-metric maximum
ow problems," Sloan W.P. No. 1908{87, Sloan School of Management,Cambridge, MA (1987).[51] M.W. Padberg and M.R. Rao, \Odd minimum cut{sets and b{matchings," Mathematicsof Operations Research, 7, 67{80 (1982).[52] V. Pan, \Fast and e�cient algorithms for the exact inversion of integer matrices," FifthAnnual Foundations of Software Technology and Theoretical Computer Science Conference,(1985).[53] W.R. Pulleyblank, Faces of the Matching Polyhedron, University of Waterloo, Ph.D. Thesis(1973).[54] J.T. Schwartz, \Fast probabilistic algorithms for veri�cation of polynomial identitities,"Journal of the ACM, 27, 701{717 (1980).[55] �E. Tardos, \A strongly polynomial minimum cost circulation algorithm," Combinatorica,5, 247{255 (1985).[56] �E. Tardos, C.A. Tovey, and M.A. Trick, \Layered augmenting path algorithms," Mathe-matics of Operations Research, 11, 362{370 (1986).[57] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and AppliedMathematics, Philadelphia, PA (1983)[58] R.E. Tarjan \A simple version of Karzanov's blocking
ow algorithm,"Operations ResearchLetters, 2, 265{268 (1984).

80 BIBLIOGRAPHY[59] R.E. Tarjan, \E�ciency of the primal network simplex algorithm for the minimum{costcirculation problem," manuscript (1988).[60] M.A. Trick, Networks with Additional Structured Constraints, Georgia Institute of Tech-nology, Atlanta, GA (1987).[61] K. Truemper, \Onmax
ows with gains and pure min{cost
ows," SIAM Journal of AppliedMathematics, 32: 450{456 (1977).[62] A. Weintraub, \A primal algorithm to solve network
ow problems with convex costs,"Management Science, 21, 87{97 (1974).

