NETWORKS AND MATCHINGS

Michael A. Trick

Author addresses:

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION, CARNEGIE MELLON UNIVERSITY,
PitTsBUrRGH, PA, 15213

Contents

Chapter I. Shortest Paths
Introduction

Label Fixing Methods
Label Correcting Methods
All Pairs Shortest Paths

CU W N -~

Problems

Chapter II. Maximum Flow
Introduction

The Maximum Flow Problem
Shortest Augmenting Paths
Layered Networks

Multiple Augmentations

The Wave Algorithm
Preflow—Push

Pushing Large Excesses

© ® NS ge W

Conclusions and Further Research
Chapter III. Minimum Cost Flow

1. Introduction

2. Canceling the Best Cycle

3. Canceling Many Cycles

11
12
13
15
15
15
18
19
20
22
24
27
28
31
31
31
33

© % S ge

CONTENTS

Canceling a Good Cycle

Cost Scaling

Shortest Path Augmentations
Capacity Scaling

Generalized Networks

THE NETWORK SIMPLEX METHOD

9.1. Fundamental Algorithm
9.2. Prohibiting Cycling

9.3. Prohibiting Stalling

9.4. Other Papers

Chapter IV. Matchings

A Al o

Introduction

Bipartite Matchings

General Matchings

Cut Generation

Determinants and a Randomized Algorithm
Weighted Matching

Generalizations of Matchings

Bibliography
BIBLIOGRAPHY

34
36
41
42
45

49
49
52
33
o4

55
55
56
58
62
65
70
74
77
77

CHAPTER 1
Shortest Paths

1. Introduction

Given a graph where each arc has a length and two special nodes s and ¢, the
shortest path problem is to find a path from s to ¢ that has minimum total length.
This problem is useful by itself in such areas as telecommunications, routing, and
robot motion planning. More importantly, though, it is a fundamental building
block for more complicated network algorithms.

We will look at three algorithms for this problem. The three have a number of
differing characteristics that make each appropriate for a certain type of applica-
tion.

2. Label Fixing Methods

The first algorithm is due to Dijkstra, in 1959. Dijkstra’s algorithm finds the
shortest path from a given source node, s, to all other nodes in the network. These
paths combine to form a shortest path tree rooted at the source. To get from the
source to any other node in the network, it is only necessary to use edges in this
shortest path tree.

This algorithm is iterative, where during the kth step, the kth closest node to
the source is added to the shortest path tree. To help us keep track of which
node is added, we will assign a tentative distance label D(¢) to each node ¢ in
the network. When we add a node to the shortest path tree, we will make this
distance label permanent (for it will give the value of the shortest path from s to
i), and signify that by adding the node to a set T' (the nodes of the tree).

Initially, we will set D(s) = 0 and D(¢) = oo (computationally, you use some
large value). During each iterative step, we will take the node with minimum D(z)
that is not in 7" and add it to 1. We will then update the tentative distances to
all nodes j adjacent to ¢. If we know that the distance from s to ¢ is D(¢), then
the distance from s to j is certainly no more than D(¢) + ¢;;. If j has a tentative

5

6 I. SHORTEST PATHS

distance higher than that, then we can update the tentative distance. So for every
7 adjacent to ¢, we set

D(j) = min{d(7), d(7) + cij}

This completes the iterative step. More formally, the algorithm is as follows:

ALGORITHM 1. Dijkstra’s Shortest Path

ShortestPath(G,s)
forallz e V
D[i] = o0
parent[:] = NULL
D[s]=0
T=90
repeat
let ¢ be node with minimum D[:] such that : ¢ T
if D[¢] = o0
network is not connected
T gives the reachable nodes
return
for all j adjacent to ¢
Dlj] = D[i] + ¢
parent[j] = i
add v to T
until T'= V.

return

Let’s work through an example.

2. LABEL FIXING METHODS 7

Initial

After adding O.

FIGURE I.1. Shortest path example

8 I. SHORTEST PATHS

After adding B.

FIGURE I.2. Shortest path example (cont.)

2. LABEL FIXING METHODS 9

After adding E

FIGURE 1.3. Shortest path example (cont.)

10 I. SHORTEST PATHS

[4]

Final Solution

FIGURE I.4. Shortest path example (cont.)

3. LABEL CORRECTING METHODS 11

Why does Dijkstra’s algorithm work?

Problem 1. Show that the node added to 7" in the kth iteration is the kth
closest node to s.

‘ This is a simple proof by induction.

Problem 2. Show that the distances assigned to each node are correct, and
hence that the algorithm is correct.

‘Agam, this is a straightforward proof by induction.

Problem 3. What is the time complexity of this algorithm?

Every arc is examined just twice while going through the adjacency lists. Finding the
node with minimum DIi] takes O(|V]), and must be done O(|V|) times. Therefore,
the total complexity is O(|E| + |V|?*) (all other operations take less time). Actually,
it is possible to store the node distances in a heap. This reduces the time to O(|F| +
[V]log [V]).

Problem 4. What happens in this algorithm if some of the costs are negative?

It fails miserably (the induction in problem 1 no longer holds).

3. Label Correcting Methods

The next algorithm uses the same essential equation as that in Dijkstra’s algo-
rithm, but uses it in a much less organized way. Although the resulting algorithm
is less efficient than Dijkstra’s algorithm, the flexibility provided by the lack of or-
ganization make it ideal for distributed computation. This algorithm also makes
a less stringent assumption about the input graph.

Suppose we have a set of tentative distance labels D(i) and go through the
nodes in order. If we ever find an edge (¢,7) such that D(j) > D(i) + ¢;;, we can
reduce D(j) to be D(¢) + ¢;j. If we go through all the nodes and edges without
finding such a case, then we can terminate. More formally, we get the algorithm
BELLMAN-FORD.

Again, we must ask ourselves two questions: why does this algorithm work and
what is the complexity of the algorithm?

Problem 1. Show that at the end of the kth iteration of the while loop, the
distance label associated with ¢ gives the minimum length path using at most &
edges.

Problem 2. How many iterations through the while loop are required? When
can this algorithm fail?

12 I. SHORTEST PATHS

ALGORITHM 2. BELLMAN-FORD(G;s)

forallz e V
D[i] = o0
parent[i] = NULL
D[s] =0
done = FALSE
while not done
done = TRUE

for eachz € V

for each edge (¢, 7)

done = FALSE
Dlj] = D[i] + ¢;
parent[j] = i

return

There should be no need for more than |V|—1 iterations, since no patch can be longer
than that. If, however, there is a negative cost cycle in the graph, the algorithm
can “loop” though that cycle, so the algorithm will still be decreasing labels after |V|
iterations. It is then that the algorithm can fail.

The time complexity follows directly from this argument. The total number of
iterations is O(|V']), and every edge is used twice in each iteration. The total time
is O(|V'||F]), which is not as good as Dijkstra’s algorithm. The advantages of the

Bellman—Ford algorithm are:

(1) can handle negative costs (though not negative cycles),
(2) can recognize negative cycles (if the distances change during iterations |V]),
(3) easier to work into a distributed environment,

4. All Pairs Shortest Paths

Our final static algorithm does more than the previous two algorithms. Both
Dijkstra’s and the Bellman—Ford algorithm find the shortest distance from a given
node to every other node. The Floyd—Warshall algorithm finds the shortest dis-
tance between every two nodes. Again, this algorithm begins with estimates of
the distances between the nodes, in this case arranged in a matrix D;;. Initially,
the estimates are the length of the edge between ¢ and j (if no edge exists, then
the estimate is set to oo or some large number). Then, at iteration k, the matrix
is updated to be the length of the shortest path using just nodes 0,1,... .k as

5. PROBLEMS 13

intermediate nodes. If we let ij be the distance matrix for the kth iteration,
then initially

-1
D() = ¢

)

The iterative step replaces this with

k+1 . k k k
D = min{ D, DY, + DL,)

This is done for £ = 0,1,...,|V| =1 to give DZ(]WD, the final result. Now the
minimum distance from 2 to j is the 7jth entry of this matrix.

You should interpret the right hand side as taking the minimum of going using
only nodes 0,1... , k and going from ¢ to k+1 and from £+ 1 to j. The correctness
of this algorithm follows from this interpretation.

To determine the complexity, note that a matrix with O(|V|?) entries is updated
O(|V]) times. This gives a total complexity of O(|V|?). This complexity is worse
than the other two algorithms if just one shortest path is required. It is better,
however, if all pairs are required.

Problem 1. How can this algorithm be implemented to find the shortest paths?

Use a predecessor matriz, and update that matriz whenever a distance matriz
is updated.

entry

5. Problems

HOMEWORK PROBLEM 1. Show that for any graph and source node s, it is
possible to choose shortest paths from s to every other node such that the arcs in
these paths forms a tree (i.e. has no cycles ignoring directions).

HOMEWORK PROBLEM 2. One obvious approach to handling negative costs in

Dijkstra’s algorithm is to add some large constant to the cost on each arc. Show
that this method does not work.

HOMEWORK PROBLEM 3. An acyclic graph is a graph with no directed cycles.
Give an algorithm for finding the longest path in acyclic graphs. What is the
complexilty of your algorithm?

HOMEWORK PROBLEM 4. A Euclidean graph is an undirected graph with dis-
tances on the edges. The nodes can be embedded in the euclidean plane such that
the distance on every edge equals the euclidean distance between the end points of
the edge. (Note that the graph need not be complete.) Modify Dijkstra’s algorithm
for this problem with the difference that the unlabeled node chosen at each iteration
is the one with minimum d(¢) + Fuclidean—distance(i,t). We are only interested
in the distance from s to t, so we can stop as soon ast is chosen.

14 I. SHORTEST PATHS

1) Glive the algorithm you create and prove its correctness (you can use any
results on the unmodified Dijkstra’s algorithm).

2) Give an example where this algorithm is a large (more than constant time)
improvement on the unmodified algorithm.

3) Give an example where the modified algorithm is no different than the un-
modified one. Can it be worse?

CHAPTER 11

Maximum Flow

1. Introduction

In this section we examine maximum flow algorithms from their roots in the early
1960’s to current algorithms. These algorithms use a variety of techniques that will
be useful in studying more complicated problems. These include such fundamental
concepts as duality, augmenting paths, scaling, and amortized analysis.

2. The Maximum Flow Problem

A network consists of a directed graph G with node set V' and arc set A. We will
assume the arcs are directed, so an arc (¢,7) is said to be from ¢ to j. Associated
with each arc (7, j) is a capacity ¢(7, j). We assume all capacities are non—negative.

Consider a network with two distinguished nodes: s (the source) and ¢ (the
sink). A feasible flow in the network assigns a value x(¢,7) to each arc (¢,7) such
that

o 0 < x(,j) <e(e,5), and
o for every node except s and ¢, the amount of flow entering the node equals
the flow leaving the node.

The maximum flow problem is to find a feasible flow that maximizes the sum of
the flows out of s.

Problem 1. Formulate the maximum flow problem as a linear program.

15

16 II. MAXIMUM FLOW

Many possibilities. Let the network be (V, A) and create variables {x, : a € A}. Let
v denote the maximum flow. The constraints are:

Z{$a3a: (jai)}—Z{l‘aia: (4,7)} =0 for all i,i # s,0 # 1
Z{%iaz(jas)}—Z{xa:a:(s,j)}—l—v:O
Sfeara=(t4)) =Y dwa:s = (tj)} —v=0

0 <z, <cy foralla € A.

The objective function is to maximize v.

Problem 2. What is the dual of this linear program?

Using the above formulation, create a dual variable u, for each constraint. The con-
straints are:

Uj —u; +w, >0 foralla=(i,5) € A
Uy — U > 1

w, > 0 for alla € A

The objective is to minimize ., CqW,.

Problem 3. What are the complementary slackness conditions?

The straightforward interpretation is that
2, >0=u; —u; +w, =0

w, > 0= a, =c¢,4
A more complicated answer examines the possibilities for u; and u;:
u; < uj. x;; must be equal to 0.
u; = uj. There may or may not be positive flow on (1,7).
Ug > Uj. Ti5 = C -

We shall assume for notational convenience that for every arc (¢,7) there is
another arc (j,¢) (possibly with capacity 0). We will also assume there is at most
one arc from 7 to j for every ¢ and j.

Let us start with an easier problem: the non—zero flow problem. Given a network
with capacities, find a feasible flow that sends at least one unit of flow from s to .

2. THE MAXIMUM FLOW PROBLEM 17

Problem 4. Give an algorithm for this problem.

Many algorithms work. The idea is to find a path from s to t such that every arc has
capacity greater than 0. Then a flow can be sent from s to t equal to the minimum
capacity of the arcs on the path found. Some possibilites: depth—first search (good
for following counterexamples), breadth first search (leads to well-known FEdmonds—
Karp), mazimum augmentation (leads to Edmonds—Karp fat-path algorithm — good
homework problem, see [57]).

We will call a path found by this algorithm an augmenting path.

Suppose we have a flow f through the network and that the flow on the arc from
4 to 5 is 10. Suppose the ¢(4,5) = 15 and f(5,4) = ¢(5,4) = 0. Then, to change
the flow, we could send either up to 5 more units of flow from 4 to 5 or remove up
to 10 units, which is equivalent to sending 10 units from 5 to 4. In other words,
we could replace the current arcs 4,5 and 5,4 with new arcs having capacity 5 and
10 respectively. If we do this for every arc in the network, we create the auzilliary
network. Suppose we find a flow f* for this network. The flow f + f* is then
feasible for the original problem.

This gives us our first algorithm for the maximum flow problem:

MAX-FLOW(N,f) N: capacitated network, f the maximum flow
f=0
REPEAT
Create auxilliary network N’ with respect to f
NONZERO-FLOW(N’, f')
f=r+r
WHILE (f" #0)
FINISHED

Problem 5. Can this algorithm go on forever?

No, assuming all capacities are finite. The algorithm augments by at least one unit
of flow each iteration.

A more difficult problem is to show that this algorithm terminates with a max-
imum flow to the original problem. Let S be a subset of V with s € S and ¢ ¢ 5.
Let T =V — 5 (sot €T). Finally, let C(S,T) be the arcs (¢,7) with ¢ € S and
JeT. C(S,T)is called a cut. The capacity of a cut is the sum of the capacities
of the arcs in the cut. Clearly, if the capacity of some cut is k& then there is no
flow from s to ¢ with value more than k.

Problem 6. Prove the above statement using duality.

18

II. MAXIMUM FLOW

Let uy = 1,1 € S; up = 0,0 € T; w; = 1,0 € 5,7 € T; and w;; = 0 otherwise.
Examining the constraints in Problem 2 shows that this is a dual feasible solution
with objective Y {c;;w;; : (¢,75) € C(S,T)}. By weak duality, this implies that the
maximum flow from s to t can be no more than that value.

Problem 7. Suppose we find a cut of capacity & and a flow of value k. What

could we conclude?

‘ We have an optimal flow.

Now, for some cut C'(S5,T) define the flow across a cut to be the sum of the

flows on the arcs in C'(S,T) minus the flow on arcs from T to S.

Problem 8. Show that the flow across any cut equals the value of the flow

(that is, the amount of flow leaving s).

One method ts by induction on the set of nodes in S. By definition this is true for
S = {s}. Suppose it is true for all subsets of S containing s. To show for S, take any
node 1 € S;1 # s. By conservation of flow at v, it is easy to show that the flow across
the cut for S equals the flow across the cut for S —i. The result follows by induction.

Problem 9. How can the NONZERO-FLOW algorithm fail?

‘ The only way it can fail is to have no path from s to t in the auxilliary graph.

Problem 10. Show that our MAX-FLOW algorithm terminates in a maximum

flow.

Let S be the nodes reachable from s in the auxilliary graph and T'=V — S. Then
every edge in C(S,T) has capacity 0. So every edge (1,5),¢ € S,5 € T has flow at its
capacity and every edge (¢,7),1 € T,j € S has zero flow. Therefore the flow across
the cut equals the capacity of the cut. By Problem 7, this gives an optimal flow.

Problem 11. How long does MAX-FLOW take (how many calls to NON-

ZERO-FLOW)? How can you improve this algorithm?

Let v' the the value of the maximum flow. This algorithm can take up to v' calls to

NONZERO-FLOW. This bound is tight as can be seen:

3. Shortest Augmenting Paths

The main idea of the algorithm of Edmonds and Karp is to augment along

shortest augmenting paths. We now will work out why this algorithm works
quickly.

With respect to the current flow f, let o(7) be equal to the length of the shortest

augmenting path from s to 7, and 7(z) be the length of the shortest augmenting
path from ¢ to ¢.

4. LAYERED NETWORKS 19

Problem 1. Show that if augmentations are done along shortest augmenting
paths, then o(7) and 7(2) are nondecreasing for all 7.

We will show for o, the case for T is similar. Let o and o' be the values before and
after the augmenation respectively, and assume o(i) > o'(¢) and ¢ has the minimum
value for o' among all such. Let (j,1) be the last arc on the augmenting path that
gives o'(¢). By such a choice, o'(j) 4+ 1 =0'(i) and o(3) + 1 < o'(1).

Claim that (i,7) was on the augmenting path. If not then o(i) < o(j)+1 (since (3,1)
capacity greater than 0). Combined with the above, this gives o(i) < o(j) +1 < o'(i7)
which is a contradiction.

So (1,7) was on the augmenting path so o(j) = o(i) + 1. Substituting above, we get
o(t)+2 < o'(i), contradiction.

Define phase k to be the augmentations during which o(t) = k.

Problem 2. Show that during phase k at most one of (¢,7) and (j,¢) will be
used in an augmenting path.
It is straightforward to see that if both (i,j) and (j,¢) appear in a phase, either a o
or a T had to decrease.

An arc is critical for an augmentation if it is on the augmenting path and has
flow equal to either 0 or its capacity after the augmentation.

Problem 3. Show that no critical arc will appear in a later augmenting path
during the same phase.

Once an arc reaches capacity (as critical ares do) it can not be used again until an
augmentation uses its reversal. By Problem 2, this cannot occur until the next phase.

Problem 4. How many augmentations can there be in a phase? How many
phases? How much time per augmentation?

Let |V = n and |A| = m. Each augmentation makes at least one arc critical, so there
can be no more than A augmentations in a phase. There are at most V' phases, and
breadth first search requires O(A) time, so the overall complexity is O(A*V).

4. Layered Networks

At the beginning of phase k., we can create a layered network by placing in layer
[all nodes ¢ with o(¢) = . An arc (¢,7) is placed in the network if and only if

o(j) = oli) + 1.

Problem 1. Show that finding a maximum flow in this layered network is
equivalent to doing all the augmentations in phase k.

20

II. MAXIMUM FLOW

Since clearly all the augmenting paths in the layered network are of length k, and
all augmenting paths in the layered network correspond to augmenting paths in the
original graph, we need only show that there is no augmenting path in the original
graph of length k that does not correspond to an augmenting path in the layered graph.
Suppose there is such a path P with edge (i,j) not in the layered graph. Then at the
beginning of the phase o(j) # o(i) + 1. But now, with o', o'(j) = o'(1) + 1. Also,
o(t)+7(1) =k and o'(¢2) + 7'(y) = k. If neither o or 7 decreased then o(i) = o'(i).

But this also holds true for o(j), which is a contradiction. Hence no P exists.

The next three algorithms we will discuss (Dinits, MPM, and Tarjan) are all

alternative ways of finding a maximum flow in a layered network. Dinits’ is the
most straightforward.

Problem 2. Apply depth first search to the layered network. What happens

after k arcs are examined (where k is the phase)?

After k ares, we have either reached t (in which case we augment), or we are forced to
back up. In the former case, one arc becomes critical, and we can remove it from the
network. In the latter case, if we back up from node v we know that no augmenting
path can go through i, so we can remove it from the graph.

Problem 3. What is the time complexity of Dinits’ algorithm?

In iteration k, there can be at most V+A = O(A) examinations of at most k arcs. The

time for phase k is therefore O(kA). There are V' phases, so the overall complexity
is O(V2A).

Note that this complexity is better than that for Edmonds and Karp, though

Dinits was two years earlier. Edmonds and Karp first presented their work in

1969.

5. Multiple Augmentations
Read [42].

The next two algorithms optimize flow in a layered network. The important

properties of this network are that it is acyclic and every node has a layer and
every arc is from one layer to the next.

For a node ¢ in the layered network with nodes V' and arcs A, each with a

capacity ¢(7,j) and a current flow f(¢,j), define its throughput p(i) to be the
minimum of the following two numbers:

> Aclh i) = (1) 2 (G.0) € A}

5 MULTIPLE AUGMENTATIONS 21
Z{C(l,]) - f(lvj) : (Zvj) € A}

For s ignore the first number, for ¢ ignore the second.

Let the node with minimum throughput be the reference node.

Problem 1. Let r be the reference node in a layered network. Show that p(r)

units of flow can be sent from s to r and the same from r to t.

To move the flow from r to t, simply assign flows to the arcs out of v in any order,
filling up one arc before assigning flow to the next. By the definition of throughput, all
flow will be assigned before the arc capacities are exhausted. Now repeat this with the
nodes in the next layer. Because the amount of flow at each layer equals the minimum
throughput, at no time will a node receive more flow than it is able to pass on to the
next layer, so all the flow will eventually end up at t. The arqument for s to r is the
same, except the arcs are treated as though reversed.

Problem 2. Show that after moving the flow in such a manner, node r can be

deleted from the layered network.

After the augmentation, either all the arcs entering r or all the arcs leaving r are
saturated (at their capacities). Since this is a layered network, acyclicity implies that
they will stay saturated. Therefore, no augmenting path can go through r, so r can be
eliminated.

During such an augmentation, some arcs will be assigned flow equal to their

capacity. Such an arc is saturated and the corresponding movement of flow is
called a saturating push of flow. An arc assigned flow not equal to its capacity is
unsaturated and the movement of flow is an unsaturating push.

Problem 3. How many unsaturating pushes are there in your solution to
Problem 17

most one unsaturating push at each node each iteration.

Because we fill up one arc completely before beginning to fill up the next, there is at

Now consider the following algorithm for a layered network: determine the node
throughputs, find the node with minimum throughput, augment flow through that
node, delete the node from the graph, update the throughputs, repeat until the
graph has no nodes (or all throughputs are 0).

Problem 4. Why is this algorithm correct? What is the complexity of this
algorithm?

22 II. MAXIMUM FLOW

By problem 1, we can correctly push flow through the network. By problem 2, we
can correctly delete the node from the network after the flow update. Repeating the
process, after at most |V | iterations, there are no nodes in the network.

To get the complexity, note that there are at most |V|? nonsaturating pushes and | A|
saturating pushes (because once an are gets saturated, it remains that way. Therefore,
the time is O(|V|* + |E|) which is O(|V|*). This gives an O(|V|?) algorithm for the

mazimum flow problem (why?).

6. The Wave Algorithm
Read [58].

All the previous algorithms had the following property: at every step of the
algorithm, the flow into a vertex equals the flow out of the vertex. Karzanov
(1974) introduced the concept of preflows that relaxes this property. Define the
excess at a node 1 relative to a set of arc values f to be:

D ASG) i) € AY =D A0, 4) : (4,) € A}

A flow (as we have defined it) has zero excess at every node except s and t. A
preflow has non—negative excess at every node except s and ¢. A node with zero
excess is said to be balanced; a node with positive excess is unbalanced. Finally,
we say a node is blocked with respect to a preflow if there is no augmenting path
from it to ¢; otherwise it is unblocked.

Karzanov’s algorithm (as modified by Tarjan) begins by making s blocked and
then attempts to make all the nodes balanced. Consider the excess at an unbal-
anced vertex. If the vertex is not blocked, then the flow still has a possibility to
get to t, so it should be sent forward (to the next layer). If the vertex is blocked,
it has no such chance by going forwards, so it should be sent back towards s by
sending it backwards (to the previous layer).

To send excess forward from ¢ we repeat the following step until its excess is 0
(¢ is balanced) or there is no unsaturated edge (7, j) with j unblocked:

Forward Flow. Let (¢,7) be an unsaturated edge with j unblocked. Increase
f(lvj) by mln{c(lvj) - f(i,j),excess of Z}

To send excess back from ¢ we repeat the following step until its excess is zero:

Backward Flow. Let (j,¢) be an edge of positive flow. Decrease f(j,¢) by
min{ f(7,¢), excess of ¢}.

Problem 1. Why must repeated application of Backward Flow terminate with
excess of zero?

‘ We can set the incoming flow to zero, which clearly has to make the excess nonpositive.

6. THE WAVE ALGORITHM 23

The maximum flow in a layered network algorithm is now the following:

Step 0. (Initialize) For every edge (s,j) set f(s,j) = ¢(s,7). Set all other flows
to zero. s is now blocked.

Step 1. (Send flow forward) Let ¢ be an unblocked, unbalanced node of minimum
layer number (s has layer 0, those next to s layer 1 and so on) other than ¢. If
no such node exists, go to Step 2. Attempt to balance the node by sending flow
forward. If ¢ is still unbalanced, mark ¢ blocked. Go to Step 1.

Step 2. (Send flow backwards) Let ¢ be a blocked, unbalanced node of maximum
layer other than s or ¢. If no such node exists, Go to Step 3. Attempt to balance
the flow by sending flow backwards. Go to Step 2.

Step 3. (Terminate?) If there are no unbalanced nodes, halt. Otherwise go to
Step 1.

Problem 2. Which nodes are unbalanced at the end of when Step 2 is called
from Step 1?7 How many iterations of Steps 1 and 2 (that is, how many Step 3)
are required?

(since each one makes at least one vertex blocked).

Only nodes that were marked blocked in the previous applications of Step 1 are now
unbalanced. Therefore, there are at most |V| iterations of Step 1 and Step 2 pairs

Problem 3. How many times will an attempt be made to balance a node
(either by sending flow forwards or backwards)?

tries for a node is O(|V|), for a total of O(|V|*) balancings.

Once we balance a blocked node, we no longer need to examine that node. We balance
an unbalanced node at most once each iteration, therefore the number of balancing

Problem 4. Someone claims that he has a problem where first the flow on an
edge increases, then it decreases, then it increases again. Do you believe him?

No, this cannot happen. An arc (i,7) has flow increased only if j is unblocked and
decreased only if j ts blocked. Since a blocked nodes remains that way, the flow first
increases then decreases on an edges (hence the “wave”).

Problem 5. How many increasing and decreasing steps are there?

Fach Forward Flow either saturates the edge or terminates an attempt to balance a
node. Similarly each Backward Flow step either puts the flow to zero or terminates a
balance attempt. Therefore there are at most O(|V|? + 2|Al) applications of Forward
and Backward Flow.

Problem 6. What is the complexity of this algorithm?

Fach call to Forward or Backward Flow takes constant time so the overall complexity
is O(|V]?), giving another O(|V|?) algorithm.

24

II. MAXIMUM FLOW

Problem 7. Compare the algorithms we have covered so far (Ford—Fulkerson,

Edmonds—Karp, Dinits, MPM, Tarjan). What are the advantages and disadvan-
tages of each? Which do you think you would work best in practice? How could
you test your guesses?

There are many ways to answer this, examining such things as worst—case time com-
plexity, data structures required, advantages and disadvantages for sparse and dense
graphs, etc. The only way to tell for sure is to do some sort of computational ex-
periment, but even then the problems solved probably have little to do with real-world
problems.

7. Preflow—Push
Read [28].

The past three algorithms find a maximum flow in a layered network. Goldberg

and Tarjan ask the question “Is the layered network necessary?” Their insight
was to avoid the layered network by working with approximate distance labels.
These labels are combined with the preflows of Karzanov to form a very simple
and appealing algorithm.

A distance labeling d is a nonnegative integer valued function on the vertices

such that d(t) =0, d(¢) > 0 for all ¢ € V, and d(j) > d(7) — 1 for every edge (i,7)

in the auxilliary network with positive capacity.

Problem 1. Show that 7 gives a valid distance labelling. Give another labelling

that is valid for any flow.

is

Clearly, 7(t) = 0 and 7(7) > 0, foriv #t. Consider an edge (i, j) with positive capacity
in the auxiliary network. Since ¢ can reach t through j, the shortest path from ¢ s
no more than 1 more than the shortest path from j, so d(i) < d(j) + 1 as needed.
Another valid labelling is to set d(t) =0 and d(¢) =1 for ¢ # 1.

The algorithm of Goldberg and Tarjan has two phases: in the first phase flow
sent from s as far forward as possible (ideally as far as ¢). In the second, excess

flow is sent back to s. Ahuja and Orlin (1987) modified the algorithm slightly,
giving a one—phase approach. It is their method we adopt here.

An initial preflow can be created by saturating each arc out of s.

Problem 2. Given that initial flow, show that setting d(¢) =0, d(s) = V and

d(i) = 1,1 # s,1 is a valid distance label.

Again clearly, d(t) = 0 and d(¢) > 0,7 # t. Consider an edge (i,7j) with positive
capacity in the auzilliary network. Since all edges out of s were saturated, 1 # s, so
d(i) <1, which means the restriction on d(j) is d(j) > 0 which is clearly so.

7. PREFLOW-PUSH 25

A node ¢ is active if it has positive excess and ¢ # s,t. The simplest version
of the algorithm is to repeat the following in any order until there are no active
vertices:

Push. Select any active vertex i. Select any edge (¢,j) with positive capacity
¢(2,7) in the auxilliary network and d(¢) = d(j) + 1 Send min(c(7, j),excess(i))
units of flow from 7 to j.

Relabel. For some active vertex ¢, replace d(¢) by min{d(y) + 1(z,7) is an edge
with positive capacity in the auxilliary graph}.

Problem 3. Show that d is always a valid labelling, and that for any ¢, d(7) is
nondecreasing.

Since the initial solution is valid, consider the push or relabel step which made the
labelling invalid. A push on (v,7) may add the edge (j, @) to the auxilliary network, so
we need d(j7) < d(i) + 1. But since we pushed on (i,j) we know that d(y) = d(i) + 1.
A push on (i,7) may also delete (¢,7) from the auzilliary network, which does not
affect the validity conditions. Finally, the relabel step explicitly ensures the validity
conditions.

If d(¢) were to decrease during a relabelling, there would be an edge (¢,7) with positive
capacity in the auxilliary network such that before the relabelling d(i) < d(j) + 1,
contrary to the validity conditions.

Problem 4. Show that every if ¢ has positive excess then there is a directed
path from ¢ to s in the auxilliary graph. How big can d(¢) get?

Constder any s—t cut. [t is simple to prove by induction that the flow across the
cut equals the flow into t plus the sum of the excesses of nodes on the t side of the
cut. For any node 1 with positive excess, claim there is an s— path consisting of arcs
with positive flow. If not, then there is an s— cut where all the forward edges have
zero flow (by the maz—flow/min—cut theorem). But this contradict the first statement
(since the sum of the excess is strictly positive). Therefore, there is an s—i path of
flows, so its reversal has positive capacity in the auxilliary graph.

Since there is a path of length at most V —1 from 1t to s and an arc is relabelled only

if it has positive excess, d(i) < d(s)+V —1=2V — 1.

Problem 5. How many saturating pushes are there?

If an arc (1,) becomes saturated, then it remains so until d(j) increases by at least 2.
Thus, an arc can be saturated at most V' times, for a total of at most VA saturating
pushes.

Problem 6. How many nonsaturating pushes. Hint: Consider Y- {d(:): is
active}. How does it increase? How does it decrease? Is it ever negative?

26

II. MAXIMUM FLOW

Consider ® = Y {d(i)i is active}. Fach nonsaturating push causes ® to decrease by
at least one. A saturating push increases ® by at most 2V . A relabelling increases it
by the increase in the label so there is an O(V?) increase due to relabellings. Since ®
is never negative, the maximum number of times ® can be decreased is equal to the

initial value plus the total increases. This is O(V?A) by problem 5.

Problem 7. Show that this algorithm terminates in a maximum flow, provided
each relabel step changes a label.

If each relabelling changes a label, the algorithm must terminate in a flow (for there
can be no more active vertices). Since d is valid and d(s) = V, there can be no
augmenting path from s to t, which implies optimality.

Problem 8. What is the complexity of this algorithm, provided each relabel
step changes a label?

If each relabel changes a label, the dominating term is the number of non-saturating

pushes, which is O(V?A).

To show a polynomial bound, then, we need only ensure that every relabel step
changes a label. One way is to place an order on the edges incident to each node.
Each node has a current arc, which is the current candidate for pushing flow out
on. We can replace the Push and Relabel routines with one Push/Relabel routine:

Push/Relabel Select any active vertex ¢ and let (¢,7) be its current arc. If
d(7) = d(:)—1 and (¢, j) has positive capacity then push flow from ¢ to j. Otherwise
replace (¢,7) by the next arc incident to 7. If (¢,7) is the last arc, relabel ¢ and
make the first arc out of ¢ the current arc for .

Problem 9. Show that each relabel step changes a distance label.

Since a relabel is called only when there are no arcs (i,7) with d(i) = d(j) + 1, the
label must strictly increase.

The resulting algorithm is O(V?A). To improve this to O(V?) we must examine
nodes in a certain order. This order is in queue order. The following step is
repeated until the queue () is empty:

Discharge. Select the vertex ¢ from the front of () and remove it. Apply
push/relabel to ¢ at least until its excess is 0 or d(¢) changes. If a push from ¢
to j causes j to get positive excess, add j to the rear of). If ¢ is still active after
the push/relabel steps, add ¢ to the end of the queue.

To analyze this algorithm (whose analysis is much like magic), define a pass over
the queue as follows: the first pass is the discharging step applied to the nodes
incident to s (which have positive excess due to our initial flow); pass p consists
of those nodes added to the queue during pass p — 1.

8. PUSHING LARGE EXCESSES 27

Problem 10. How many passes are there? Hint, consider max{d(v)v is active}.
Suppose it stays the same or increases during a pass. What must have happened?
How many times can that happen? Suppose it decreases. How many times can
that happen?

Let @ = max{d(i)t is active}. Consider what happens to ® during a pass. If @
remains the same, then some distance label must increase. If ® increases, some
distance label increases the same amount. Therefore, the total number of passes for
which ® increases or remains the same is O(V?). Also, since ® > 0, the number of
passes where it decreases is O(V?), giving O(V?) passes.

Problem 11. How many non—saturating pushes are there? What is the time
complexity of this algorithm?

There is at most one nonsaturating push per node per pass. Therefore, there are
O(V?) nonsaturating pushes, leading to an O(V?) algorithm.

The overall complexity of this algorithm is O(V?). To get the complexity down
further, complicated data structures must be used, the so—called dynamic trees,
which turn up everywhere in network algorithms (well, everywhere Tarjan is writ-
ing anyway).

8. Pushing Large Excesses
Read [2].

In their new paper, Ahuja and Orlin modify the order in which nodes are ex-
amined in the Goldberg—Tarjan algorithm. The resulting algorithm is still very
simple, but its time bound is better than any others, as long as the capacities are
not too big (even if the capacities are very large, you can argue that this is the
fastest algorithm).

The essential idea is to push flow from nodes with large excess to nodes with
small excess, never creating too much excess at a node. Let U be the maximum
capacity of any edge. The algorithm performs [log U] 4 1 scaling iterations. For
each iteration, there is a limit on the maximum excess permitted, A. We will
assume A is a power of two. In an iteration, every non—saturating push sends at
least A/2 units of flow and no excess is created of size more than A. To ensure
this we will always send flow from a node with excess at least A/2 to a node with
excess less than A/2.

Using our notation for Goldberg—Tarjan, given we are in a scaling iteration with
A, we choose the node with minimum distance such that the node has excess at
least A/2. We then apply Push/Relabel except that we never create excess more
than A (if we would, we stop sending flow when the excess reaches A). If no node

28

II. MAXIMUM FLOW

exists with excess at least A/2; we replace A with A/2 and begin a new scaling
iteration.

Problem 1. Show that our choice of node means that we always send flow from

a node with excess at least A/2 to one with excess less than A/2.

If we push on (i,7) then we have e; > A/2. Since we chose i so that it had minimum
distance among all such nodes, e; < A/2.

Problem 2. Show that each nonsaturating push sends at least A/2 units of

flow.

There are three limitations we can reach: the arc capacity, the excess of the node we
push from, and the limitation that the excess of the node we push to is no more than
A. The latter two limitations are at least AJ2. A nonsaturating push doesn’t reach
arc capacity, so we push at least AJ2 units.

Problem 3. Show that there are O(V?) nonsaturating pushes in any scaling

iteration. (Hint: Examine)" e;d; where ¢; is the excess of node ¢). How many
nonsaturating pushes are there in total? How many saturating pushes?

Consider ® = Y e;d;. Initially this is bounded by 2V*A, for each ¢; < A and each
d; <2V. When the algorithm examines node © one of two things happens:

(1) The algorithm increases its distance label. The number of times this can be done
for each node is no more than 2V and each increases ® by A, so the increase in ®
due to relabellings is bounded by 2V2A.

(2) The algorithm pushes along an arc. Fach nonsaturating push decreases ® by at
least AJ2. Each saturating push decreases ® by some amount. Therefore, the number
of nonsaturating pushes is no more than the initial value of ® plus the increase in ®
divided by the minimum amount the push decreases ®. This turns out to be 8V2.
Since there are log U scaling iterations, there are O(V*log U) nonsaturating pushes.
There are O(V A) saturating pushes for the reasons given in Goldberg—Tarjan.

In order to show that the overall algorithm takes time O(V?logU), it is nec-

essary to give data structures that permit the finding of the minimum distance
node with large enough capacity, and other aspects of this algorithm. This makes
the algorithm a bit nasty looking, but doesn’t change the essential aspects. Read
Ahuja and Orlin for further details.

9. Conclusions and Further Research

In this tutorial, we have examined seven algorithms for the maximum flow prob-

lem: those by Ford and Fulkerson, Edmonds and Karp, Dinits, MPM, Karzanov
(via Tarjan), Goldberg and Tarjan, and Ahuja and Orlin. The complexity of the

9. CONCLUSIONS AND FURTHER RESEARCH 29

versions we examined ranges from O(v*) (the value of the maximum flow) for
Ford-Fulkerson down to O(V?) for MPM, Karzanov, and Goldberg-Tarjan and
O(V?*log U) for Ahuja—Orlin. In this tutorial we have omitted one very important
topic: sophisticated data structures, such as dynamic trees (see [28]) as well as a
number of other algorithms (see [2] for references). Even at this stage, however,
there are a number of intriguing research questions:

Research Problem 1. Is there an O(V A) algorithm for the maximum flow
problem or can you create a nontrivial lower bound? This bound seems to be the
natural bound, but no one has found such an algorithm.

Research Problem 2. Which of these algorithms works best in practice?
Do some algorithms work better with some network structures than others? Is
there a hybrid algorithm that somehow identifies and takes advantages of these
differences? Are there variations on these algorithms that work especially well in
practice? For example, in Ahuja—Orlin, pushing is done from the minimum level,
whereas in practical terms, it seems better to push from the maximum level. Can
you still retain a polynomial bound? Does it work better in practice?

Research Problem 3. What other maximum flow algorithms can you find?
For instance, can you combine the MPM idea of throughput with the Goldberg—
Tarjan pushing of flows ideas? Is there a variation on the Edmonds—Karp “fat—
path” routine (see [19, 57]) whose complexity doesn’t depend on the capacities (this
would be particularly attractive in practice, for it seems reasonable to augment by
as much as possible)?

Research Problem 4. There are a number of problems that use a maximum
flow routine as a subroutine, for instance the problem of finding a minimum cut
tree ([33, 10]). Do any of these routines, or variations on them, work particularly
well for one of these problems?

Research Problem 5. There are a number of generalizations of maximum
flow, including polymatroidal flow [40], submodular flow [23], and generalized flow
(flow with gains and losses), and there has been some success in generalizing the
maximum flow algorithms ([56],[27]). Can some others, or variations thereof, be
similarly generalized?

Research Problem 6. There are alternative measures of an algorithm than
sequential worst case time. Some of these include parallel complexity (discussed in
[2, 28]) and average case behaviour. Is there a reasonable definition of average case,
and do the algorithms discussed differ in their average case behaviour? Is there a
completely different algorithm that is particularly suitable in parallel? (The latter
has been done for matching, using randomization and a translation to a matrix
question (see section 4.5.)

30 II. MAXIMUM FLOW

Research Problem 7. Another possibility is to create a randomized algo-
rithm with good worst case behaviour. Randomization prevents systematic errors
causing poor time complexity. For instance, it is easy to show in the Goldberg—
Tarjan algorithm that simply taking the node with minimum level is not a good
algorithm. What about randomly picking a node with positive excess? What
is the worst expected performance of this algorithm? Note that this is different
from average case behaviour, for the probability model is in the algorithm, not the
input.

Research Problem 8. The parametric maximum flow problem has the arc
capacities a function of a single parameter. The objective is to do such things
as find the optimal value for the parameter, determine the breakpoints in the
solution value and so on. The excellent paper by Gallo, Grigoriadis, and Tarjan
[26] gives a number of references and shows how the Goldberg-Tarjan algorithm
can be used to solve these problems in time proportional to the time to solve a
single maximum flow problem (previous algorithms solved a series of maximum
flow problems). One intriguing question they raise is whether such a modification
can be done for any maximum flow algorithm. Or, more realistically, can the
Ahuja—Orlin algorithm (or some modification) be so modified? See also [50].

CHAPTER III

Minimum Cost Flow

1. Introduction

The minimum cost flow model is one of the most frequently used in Operations
Research. This is due to three reasons: it is easy to understand, it is widely
applicable, and solutions to reasonable problems can be found very quickly. These
notes concentrate on the third aspect: solvability. For more information on the
applicability of network models see [1].

In this section, we will concentrate on various general solution techniques, with
an emphasis on papers and results from the past two or three years. We begin
with two cycle canceling algorithms. These algorithms have the advantage of being
conceptually very simple and perhaps practical. Following sections study scaling
algorithms.

2. Canceling the Best Cycle

Let G = (V, A) be a directed network with a cost on each arc a of ¢, and a
capacity u,. Associated with each node ¢ € V is an integer b(¢) representing its
supply or demand (b(¢) < 0 means ¢ has a demand for flow; b(z) > 0 is a supply).
The minimum cost flow problem is to move the flow from the supply vertices to
the demand vertices along the arcs so as to minimize the total cost. This can be
written as a linear program as follows:

min cx
Yoorapn— Y TG =b
{(i,5)eA} {(57)eA}
0< 2, <ug

Let n =V and m = A.

31

32 ITI. MINIMUM COST FLOW

There are a number of optimality conditions for the minimum cost flow problem.
We will begin with one based on negative cycles. First a few definitions. An arc
(¢,7) with flow x(¢,7) has residual capacity u(i,j) — x(2,7) and cost ¢(7, 7). It also
gives rise to an arc (j,7) with residual capacity x(7, j) with cost —¢(7, 7). An arc
is a residual arc if it has positive residual capacity. A residual cycle is a directed
cycle of residual arcs and has cost equal to the sum of the costs on the cycle.

The following theorem is the main theorem of this section:

Theorem. A feasible solution to a minimum cost flow problem is optimal if and
only if there are no negative cost residual cycles.

Problem 1. Prove the above theorem. (Hint: Argue that any solution with net
flow of zero at each node can be decomposed into at most A cycles. The theorem
then follows easily.)

(if) If an optimal solution had a negative residual cycle then, after augmenting around
the cycle, a better feasible solution could be found, a contradiction.

(only if) Let f be any feasible solution and let f* be the optimal solution. Assume f is
not optimal. Examine the flow x = f* — f, where negative flow on an arc is taken to
be positive flow on the arc in the opposite direction. Since both f and f* are feasible,
x has net flow 0 at each node. Now examine any arc e with . nonzero. We can
create a path of nonzero flows beginning at the head of e. Since the net flow at each
node is 0, if we enter a node we have not visited before we can leave it. This continues
until we enter a node we have visited, at which point we have found a cycle. We can
remove an amount of flow equal to the minimum flow on the cycle from each arc on
the cycle, deleting one arc from x. We can do this at most m times, decomposing x
into m cyeles. Fach cycle is a residual cycle with respect to [(for it is a cycle in
f*=1f). Also, f* equals [augmented by these cycles. Since the cost for f* equals the
cost for f plus the cost on the cycles and has smaller cost, at least one of the cycles
must have negative cost.

Define the improvement of a negative cycle to be the product of the cost of the
cycle and the flow of the cycle.

Problem 2. Assume you have a feasible solution and a method for finding the
negative cycle with maximum improvement. Give a polynomial time algorithm
for the minimum cost flow problem.

The algorithm is simply find the maximum improvement cycle, augment around it,
repeat until no negative cycle remains. By the proof of problem 1, the maximum im-
provement cycle must improve by at least 1/m of the current distance from optimality.
The initial solution is at most mUC away from optimal (U is the mazimum capacity,
C the difference between the mazimum and minimum costs). Some calculations show
that O(mlog(mUC)) iterations are required before the distance is less than 1.

3. CANCELING MANY CYCLES 33

Problem 3. Show that finding the negative cycle with maximum improvement
in a graph is an NP—complete problem.

Reduction from hamiltonian cycle. From a hamiltonian cycle instance, create a graph
with costs of -1 on all edges corresponding to edges in the instance. A mazximum
improvement cycle is a hamiltonian cycle, if one exists.

The next section presents an algorithm by Barahona and Tardos that modifies
a much earlier paper by Weintraub to give a polynomial algorithm. The main idea
is to find a set of cycles at least as good as the minimum cost negative cycle.

3. Canceling Many Cycles
Read [8].

We saw in the previous section that if we could find the maximum improvement
cycle in time K then we could solve the minimum cost flow problem in time
O(Kmlog(mUC)). Unfortunately, K is probably exponential. Barahona and
Tardos [8], modifying very early work by Weitraub [62], give a method for finding
a set of cycles at least as good as the maximum improvement cycle.

For a graph GG = (V, A) with a cost function ¢ on the edges, create an auxilliary
bipartite graph B = (V' U V", A") as follows:

For each node v € V create two copies v/ € V' and v"” € V”. Create an arc
a’" = (¢, 7" if either ¢ = j or (¢,5) € A. Define the cost of the arc (¢',7” to be 0 if
i =7 and ¢(z,7) otherwise.

A perfect matching in B is a set of arcs so that each node is incident to exactly
one arc. Solving the matching problem in bipartite graphs (also known as the
assignment problem) is distinctly easier than the minimum cost flow problem ([14,

57]).

Problem 1. Show that each perfect matching in B corresponds to a set of
node—disjoint cycles in G.

Consider a matching M. Suppose (¢',j") € M with ¢ # j. Then (j',k") € M for
k # j and so on unti (I';i" € M. The nodes t,j,k,... 1 then form a cycle in the
original graph.

If (¢/,i") € M then i is not part of a cycle.

Finding disjoint cycles in the residual graph, even those with minimum cost, is
not enough to find the a maximum improvement set. For that, we must solve a
sequence of assignment problems. Let Ay > Ay > A3 > ... > Ay > 0 denote the
different values of the residual capacities in G. Let G(A) = (V, E()X)) where E())

are all arcs with residual capacity at least .

34 ITI. MINIMUM COST FLOW

Problem 2. Consider solving an assignment problem using the auxilliary bipar-
tite graph of GG(A). What is a lower bound on the improvement when augmenting
around the corresponding cycles in G7

If ¢ is the sum of the costs in the cycles, then, since every cycle can be augmented by
at least X, the improvement is at least cA.

Problem 3. Suppose the assignent problem corresponding to G(A;) for ¢ =
1,...,k is solved and the best lower bound used. Show that the improvement is
at least that of the maximum improvement (single) cycle in the original graph.

Let \; be the residual capacity of the mazimum improvement cycle. Then G(X\;) con-
tains every edge of the cycle. Therefore the cycle is feasible for the matching problem,
so the minimum cost solution will be at least as good as that for the single cycle.

The result of this problem gives an algorithm for the minimum cost flow problem:
create the residual graph, solve a series of assignment problems, augment along
the best set of cycles found, repeat. We previously showed that no more than
O(mlog(mUC)) cancellations are required. In the above definition of Ax, clearly
k < m, so each cancellation requires solving at most m asssignment problems.
The overall time bound is O(m?Alog(mUC')), where A is the time to solve an
assignment problem. This can be improved as follows:

Note that the assignment problems are very similar to each other: one extra
edge is added to get from one to the next. It is possible to show that given a
solution to one, the solution to the next can be solved with one shortest path
calculation, where the corresponding graph has negative weights.

The final time bound is O(m?(m + nlogn)log(mUC)).

4. Canceling a Good Cycle
Read [30].

An alternative to canceling a set of cycles at least as good as the maximum
improvement cycle is to cancel a single cycle that is “good enough.” Goldberg and
Tarjan [30] show that the cycle that has minimum mean cost is such a cycle. The
mean cost of a cycle is defined to be the cost of the cycle divided by the number
of edges in the cycle.

In order to show that this algorithm works we need to understand some concepts
from duality theory. A price function p assigns a value to each node of G. The
reduced cost for an arc (7, j) with respect to p is ¢,(¢,5) = ¢(¢,7) + p(¢) — p(J)-

Problem 1. Show that the reduced cost of a cycle is the same for every value
of p.

4. CANCELING A GOOD CYCLE 35

Consider an adjacent pair of edges on the cyele (i,7) and (j, k). The cost from this
pair is (i, j) + p(i) = p(j) + c(j, k) + p(j) — p(k) = (i, j) + c(j, k) + p(i) — p(k).

Continuing around the cycle cancels off all the p values.

An alternative optimality criterion is as follows:

Theorem. A feasible solution f is optimal if and only if there is a price function
p so that the reduced cost for every residual edge is nonnegative.

Tardos [55] and Bertsekas [9] independently defined the notion of e—optimality.
A feasible circulation is ¢—optimal if there is a price function p so that the reduced
cost for every residual edge is > —e.

Problem 2. Show that if all the arc costs are integer and ¢ < 1/n then
e-optimality implies optimality. (Hint: What is the cost of the minimum cost
cycle?)

If each arc has cost > 1/n then the minimum cost cycle has cost > —1. Since all the
arc costs are integer, the minimum cost cycle must have cost > 0 so the solution is
optimal.

For a feasible flow f, let €(f) be the minimum epsilon such that there exists a p
so that f is e-optimal with respect to p. We can relate this value to the minimum
mean cost residual cycle. Let p(f) be the mean cost of a minimum mean residual
cycle.

Problem 3. Show that for any circulation f, e(f) = max{0, —u(f)}.

Consider any cycle I' with | edges. If we add e(f) to each edge, I' must end up
with nonnegative cost, so ¢(I') + €l > 0. This means ¢(I')/l > —e(f) for all T so
«(f) = =u(f).

Now, suppose u(f) > 0. Then e(f) = 0 (the solution is optimal). Otherwise, add
—u(f) to each arc cost. Since there are no longer any negative cycles, there exists a
cost function that gives a postive reduced cost to each residual edge. Now subtract off
the —u(f). The reduced costs are all at least u(f), so e < —pu(f).

Problem 4. Show that canceling a minimum mean cycle cannot increase €(f).

In order for pu(f) to equal —e(f) there must be a price function that realizes €(f) for
which all ares on the minimum mean cycle have reduced cost —e(f). Augmenting
around this cycle only creates arcs with reduced cost €(f) so € has not increased.

For the proof, we need to show how quickly €(f) decreases. Let f be a feasible
solution, let € = ¢(f), and let p be a price function that gives e. Consider a
sequence of m minimum-mean cycle cancellations.

Problem 5. Suppose the reduced cost for every arc in each cycle cancelled is
negative. Show that the final solution is optimal.

36 ITI. MINIMUM COST FLOW

By the argument in problem 3, if an augmentation is done using only negative reduced
cost arcs only positive reduced cost arcs are created. After at most m augmentations
there are no negative reduced cost arcs, so the solution is optimal.

Problem 6. Suppose an arc is used with non—negative reduced cost. Show
that just before the augmentation e(f) = (1 — 1/n)e.

Let the length of the cycle be l. If one arc is non—negative, then the cost of the cycle
is > —e(l—=1)/1 > —e(n —1)/n. But that implies that the e(f) < (1 —1/n)e.

Some logarithmic calculations show that for integer costs O(nmlog(nC')) iter-
ations are required for optimality. This can be changed to O(nm?logn) for a
strongly polynomial bound.

Karp [37] gives an algorithm for finding the minimum mean cycle that requires
O(nm) time. This gives a total time of

O(n*m?*min{log(nC), mlogn})

on networks with integer arc costs.

5. Cost Scaling
Read [29].

The fundamental idea behind scaling is to ignore most of the problem data and
solve an approximation to the instance. More data is added and the previous
solution is used to find a more accurate solution. We begin with an algorithm
by Goldberg and Tarjan ([29]) that uses cost scaling. In this case, most of the
cost information is ignored initially and added in steps. Recall the concept of
e-optimality from the cycle cancelling section. We will begin with a flow that is
e—optimal, where € is the maximum cost in the network. We will then improve this
flow so that it becomes ¢/2 optimal. After lognC such improvements, the flow
is e-optimal for ¢ < 1/n. Assuming the costs are integer, this implies the flow is
optimal, as we previously proved.

A generic description of a cost scaling algorithm is as follows:

Procedure Min-cost(V,A,u,c)

€ = max(i jea |c(1,)|

fo = some feasible flow

pe(v) =0, for all v

while ¢>1/n do
ImproveApproximation(e, f, p)
c=¢/2
endwhile

end.

5. COST SCALING 37

ImproveApproximation is a routine that takes an ¢-optimal solution and creates
an ¢/2-optimal solution.

Goldberg and Tarjan suggest a number of possibilities for ImproveApproxima-
tion varying in the sophistication of the data structures, the ability to be paral-
lelized, and so on. We will examine two: a generic pseudoflow based method, and
an improvement thereof. These algorithms are highly reminiscent of Tarjan’s wave
algorithm for maximum flow ([38]).

We begin with the concept of a pseudoflow. A pseudoflow is an assignment of
values to the arcs that satisfies capacity and lower bound constraints, but does
not necessarily satisfy conservation of flow at the nodes (remember a preflow had
nonnegative excess at each node; a pseudoflow allows positive or negative). We
extend the concept of e-optimality to pseudoflows in the obvious way: a pseudoflow
is e-optimal if there is a price function p such that the reduced cost of every residual
arc is at least —e.

Problem 1. For a given p, give a method for finding a 0—optimal pseudoflow.

Simply set f(i,7) =u(i,j) if cp(i,7) <0 and f(i,7) = 0 otherwise.
So, given an e-optimal flow, we can create an ¢/2-pseudoflow. We now give
methods for changing an ¢/2-psueudoflow into an ¢/2-optimal flow.

Let e(z) be the net flow into node ¢ minus its requirement. We say that ¢ is
active if e(2) > 0.

The sum of the balances always
Problem 2. Show that a pseudoflow with no active node is a flow. | and once negatively). If no balar
is a flow.

Recall that ¢,(1, j) is the reduced cost of arc (¢, j) relative to p. We will say that
a residual arc (¢, 7) is admissible relative to p if it has positive residual capacity
and —e/2 < ¢,(i,5) < 0. Let r(¢,7) be the residual capacity of (7, j). For an active
node ¢, consider the following routine:

PushRelabel(i)
if there exists an admissible arc (¢,7) then
push min(e(z),r(z, 7)) from ¢ to j
else p(i) = pli) -+ ¢/3 + min{ey(i,) : (i-§) € A,r(i,) > 0}
end.

Problem 3. Show that Pushrelabel(i) preserves €/2—optimality.

Pushing on an arc can only create an arc in the residual graph with positive reduced
cost. Now consider relabelling node t. The reduced cost for any arc (i,7) is decreased
by at most ¢/2 plus the previous reduced cost. Therefore the reduced cost of the arc is
at least —¢/2, so the solution is still ¢/2-optimal.

38

ITI. MINIMUM COST FLOW

This leads to our first algorithm for ImproveApprozimation:

ImproveApproximation(, f, p)
Create initial solution
while there is an active node do
select an active node 2
PushRelabel(i)
endwhile
end.

From problems 2 and 3, if we show that ImproveApprozimation terminates, then

it must terminate in an ¢/2-optimal flow. The proof of termination is very similar
to the case for maximum flow.

Problem 4. Show that p(7) only increases and that it increases by at least ¢/2.

Relabelling is done only when there is no admissible arc, so min{c,(¢,7) : (7,j) €
A,r(i,7) >0} > 0. The amount added to p(v) is at least €/2.

We now wish to bound the number of times p increases for each node. Let f’

be the e-optimal flow at the beginning of the phase and f the current pseudoflow.
Let ¢ be an active node. Using decomposition techniques similar to those used for
maximum flow, we can show that there exists a node j and a path P from ¢ to j
such that j has negative excess, P is an augmenting path with respect to f, and
the reversal of P is augmenting with respect to f’. Formalizing this is somewhat
tedious:

Problem 5. Show the above statement.

Let Gr = (V, By) where By = ()2 (P J) > 10)) or (F0»3) < U2 0)}, and
G_ = (V,E_) is the corresponding graph with the roles of f and f' reversed. Any
edge in F is a residual edges with respect to f and any in E_ ts residual with respect
to f'. Furthermore, if (¢1,7) € E4 then (j,1) € E_. So, if we find a suitable P in G
then we are done.

Fizing v, suppose we can reach no node j with negative excess in Gy. Let S be the set
reachable from ¢ and 5" =V — 5. The flow across any cut with respect to f' is zero.
Also, every edge from k € S to j € S must have f(k,5) > f'(k,j) and every edge
from j to k has f(5,k) < f'(j,k). So the flow across the cut in f is non-negative.
But it is easy to see that the flow across a cut equals —b(S) < 0, a contradiction.

This leads to a bound on the number of times p(7) is increased.

Problem 6. Suppose j has negative excess. What is the relation between p(y)

now and at the beginning of the phase?

5. COST SCALING 39

If 7 has negative excess, then at no point would we have chosen j for PushRelabel so
its p value is unchanged.

Problem 7. Get a bound on p(i) based on P. Do the same for p'(¢) based
on the reversal of P. Combine them and bound the number of increases to p(z).

For v with positive excess, find P and j as in problem 5. Since P is augmenting with
respect to f and f is ¢/2-optimal, p(i) < p(j) + Pe/2 + Y jyepcli,j). Similarly,
at the beginning of the phase, f' is e-optimal, so p'(j) < p(2) + Pe+ X nep (i,).
Using p(j) = p'(j) and c(1,j) = —c(1,7) gives p(r) — p'(z) < (3n/2)e.

We say that a push is saturating if the residual capacity of the arc after the push
is 0.

Problem 8. How many saturating pushes are there in a phase?

A saturating push removes the arc from the residual graph. It cannot appear again
until (j,1) is used. But the dual for j must have increased in the interim. This gives
an O(n) bound per are, or O(nm) in total.

We need one more result to bound the number of unsaturating pushes.

Problem 9. Show that the graph of admissible arcs is acyclic.

Initially the admissible graph is empty, so is acyclic. A push operation creates no new
admissible edges. After a relabel, no admissible edge enters ¢ (the dual of v increases
by at least €/2 so all arcs entering must get non—negative reduced cost). If the graph
was acyclic before the relabel, then it must remain so.

Let h(7) be the number of nodes reachable from ¢ in the graph of admissible
arcs. We will now use the potential function ® = Y {h(¢) : ¢ is active}.

Problem 10. Show that each relabel or saturating push increases ® by at most
n and each nonsaturating push decreases ® by at least 1. What is the number of
nonsaturating pushes?

A nonsaturating push on (i,7) makes ¢ inactive while possibly making j active. But
h(y) < h(i) —1, since i reaches everything j does as well as v itself, so ® decreases by
at least 1.

A relabel on @ increases only h(i) (since no arc enters i afterwards), so the increase
is at most n. A saturating push on (i,7) can only increase h(j), so again the increase
is at most n.

Since ® is non—negative and has an initial value of at most O(n?), the number of
nonsaturating pushes is O(n*m).

Problem 11. What is the complexity of this algorithm?

40 ITI. MINIMUM COST FLOW

FEach call to ImproveApprovimation requires O(n*m) time (the nonsaturating push
time dominates). The number of scaling phases is O(lognC) for a total of
O(n*mlogn(C).

We can improve this slightly by examining the nodes in a certain order (just like
the maximum flow case). Because the admissible graph is acyclic, we can order
the nodes in the network so that if (7,) is an admissible arc, then ¢ < j (this is
called the topoligical ordering).

Problem 12. Suppose the nodes are examined in topological order and no
relabel is required. Show that the resulting pseudoflow is a flow.

Every push is to a higher node. Therefore, if no relabel is done, there are no further
active nodes, so the result is a flow.

Problem 13. How many node examinations are required if the nodes are
examined in topological order?

Since there are O(n?) relabels, there are O(n®) node examinations. FEach node ea-
amination has at most one non—saturating push, so O(n*) nonsaturating pushes are
required.

Note that a push does not change the topological order, only a relabel does. It
is possible to determine the topological order of a graph in O(m) time. Since there
are O(n?) relabellings this leads to O(n*m) time. We can improve on this by the
following: Starting with a topological order of the nodes, after a relabel of node ¢,
move ¢ to the first position.

Problem 14. Show that this is a valid topological ordering for the new admissi-

Suppose we relabel 1. We have already shown that no admissible edge enters v after a

ble graph. | relabelling. For each (i,7), 1 comes before j. For each (k,j) with k # i, neither the

admissible graph or the topological order change, so the order is still valid.

Problem 15. What is the complexity of this algorithm?

O(n?lognC).

Goldberg and Tarjan continue by adding dynamic trees, replacing an O(n?) term
with one of O(mlogn), and then discuss other improvements and the parallel case.

Attached to this set of notes is a listing of a straightforward implementation
of this algorithm. One useful project is to examine the code to see how simple
the algorithm really is. How could you improve the execution time of this code?
How fast does it work in practice (say, compared with standard network codes)?
Does the computation time vary much depending on the network topology? Cost
ranges? Does the time seem to follow our worst case analysis or does it seem to
work differently in practice? These are a sample of the questions that might be

asked.

6. SHORTEST PATH AUGMENTATIONS 41

6. Shortest Path Augmentations
Read [49]

In the previous algorithm, we had the following problem: Transform a given
pseudoflow into an optimal flow. The previous algorithm “almost” did that; it
found an ¢-optimal flow. An alternative, and perhaps more natural, approach
is to directly move flow from nodes with positive excess to nodes with negative
excess. Of course, we can not do this movement arbitrarily. We must be able to
prove that we have an optimal flow at termination. We do this by keeping a dual
feasible solution at all times. Then, if we can prove that we must terminate in a
flow, then we will terminate in an optimal flow.

Problem 1. Show that if we have a feasible flow f and a price function p such
that ¢,(¢,7) > 0 for every (¢,7) with positive residual capacity, then f is optimal.

This follows directly from the complementary slackness conditions.

Problem 2. Give a method for finding a pseudoflow f and price function p
such that every residual arc has nonnegative reduced cost.

to the upper bound.

For every arc with negative reduced cost with respect to p, set the flow on the arc equal

Given a pseudoflow and associated price function, we will try to update the flow
and price so as to keep dual feasibility but reduce the sum of the positive excesses.
Choose a node ¢ with positive excess. We can easily calculate the shortest path
(with costs as distances) from 7 to every other node using arcs in the residual
network.

Problem 3. Show that the shortest path is the same whether original costs or
reduced costs are used.

the length of every path, so the shortest path remains the same.

The cost on a path P from i to j is Y mepc' (I, k) = Xamepcll, k) — p(l) + plk) =
p(j) — p(2) + Zmepcll, k). Therefore, the cost function simply adds a constant to

Now let 5 be some node reachable from ¢, and P the shortest path that connects
them.

Problem 4. What is the maximum flow can be sent from 2 to 5 along P?

capacity of an arc on P.

The minimum of the excess at v, the negative of the excess at 7, and the residual

42

ITI. MINIMUM COST FLOW

But we must update the price function so the reduced cost for any residual arc

are nonnegative. Let d(k) be the shortest distance from 7 to k in the residual
graph (with respect to the reduced costs). Consider the cost function p’ = p — d.

Problem 5. Show that the reduced cost with respect to p’ for any arc in the

residual graph before augmenting is nonnegative.

Since d gives the shortest paths in the residual graph, d(k) < d(1) 4+ (1, k) for (I, k
in the residual graph. Substituting in gives new residual costs of '(I, k) = (I, k) —
d(l) +d(j) = 0.

Problem 6. What arcs are added to the residual graph after augmenting?

What are their reduced costs?

The only arcs added to the residual graph are the reversals of those on the augmenting
path. But arcs on the augmenting path have new residual cost 0, so the reversals do
also.

Therefore, we have reduced the positive excess while keeping a dual feasible

price function.

Problem 7. How many shortest path calculations are required? What algo-

rithm can be used for this shortest path calculation? What is the complexity of
this algorithm?

If U is the total positive excess created during initialization, then U shortest path cal-
culations are required. Since we work with reduced costs that are always nonnegative,
we can use fast, Diykstra—like algorithms for the shortest path calculation. The best
bound is then is O(U(m + nlogn)).

Problem 8. Consider the assignment problem. What is the complexity of this

algorithm for that problem?

Here U = O(n) so we get a bound of O(mn + n?logn).

7. Capacity Scaling

The correctness of the previous algorithm is independent of the choice of ¢ and j.

Of course, this means we can play a number of games in order to get a polynomial

bound. One method is to scale the arc capacities in such a way as to replace the

U

term with a log(U) term. There are a number of ways of presenting this. We

will change our basic model to that of uncapacitated networks with supplies and

demands. We also add infinite capacity arcs between every ¢ and j with sufficiently

high cost to ensure that they will not be used in any optimal solution. (This is

7. CAPACITY SCALING 43

mainly for notational convenience). We will also assume all costs are positive. The
supply at 7 will be denoted b(7) (negative b(7) represents demand).

Problem 1. Give a method for translating a circulation problem with upper
bounds to an uncapacitated network with supplies and demands.

on i the same. Let the supply on k be —u;; (a demand).

Replace each capacitated edge (i,j) with two edges, (i, k) and (j, k). Let the cost of
(1, k) be ¢;; and the cost of (3,k) be 0. Add u;; to the supply on j, and keep the supply

Our goal is to push only from nodes with high excess to those with high negative
excess. We begin with a pseudoflow where there is a A such that either all the
positive excesses are less than 2A or all the negative ones have absolute value less
than 2A, or possibly both. We then do augmentations to make this condition true
for A. For this, we will want to ensure that every augmentation pushes at least

A.
For scaling phase A, let S(A) = {v:e(¢e) > A} and T(A) = {v: e(2) < A}
Thus, at the beginning of scaling phase A, either S(2A) or T'(2A) is empty.

Problem 2. How many scaling phases are there?

Once A < 1 we can terminate, so there are O(log U) scaling phases.

The capacity scaling algorithm is exactly the shortest augmentation algorithm
with the following differences:

(1) Augmentations are done from 7 € S(A) to j € T(A).
(2) Exactly A units of flow are pushed, independent of the excesses or the arc
capacities.

Problem 3. Show that during scaling phase A the capacity of each arc is an
integer multiple of A. Show that the push above neither violates arc capacities
nor changes a node from positive to negative excess or from negative to positive
excess.

greater than A to those with excess less than —A, no excess changes sign.

Fach arc capacity begins as an integer multiple of A. Since every augmentation pushes
exactly A, this property is retained. Finally, since we push from nodes with excess

Problem 4. How many augmentations are there in a scaling phase?

for T(2A) empty is similar.

Consider the case when S(2A) is empty at the beginning of the phase. Fach augmen-
tation then reduces S(A) by one, so at most n augmentations are required. The case

Problem 5. What is the overall complexity of this algorithm?

44

ITI. MINIMUM COST FLOW

O(nlog U) times the time for a shortest path caleulation with nonnegative distances.
But this is in terms of the transformed problem. In terms of the capacitated circulation

problem, the bound is O(mlogU).

Thus far, we are following a version of Edmonds and Karp’s algorithm ([19]).
But is is possible to improve on this bound by removing the effect of U completely.
The idea is to identify arcs that must have nonzero flow on them in any optimal
solution.

Problem 6. What is the most a flow on an arc can change during a scaling
phase? How about for the rest of the algorithm?

tions, the change is n/A. The total over all remaining augmentations is then 2nA.

Since each augmentation changes the flow by A, and there are at most n augmenta-

So any arc with flow more than 2nA must have positive flow for any optimal
solution. Such an arc must have reduced cost zero for the remainder of the al-
gorithm. A natural operation is to shrink the arc, combining its endnodes. We
replace 7 and j with a node k, and replace any arc incident to ¢ or j with one
incident to k. The supply at k is the sum of the supplies of j and 2. We now have
a problem with one less node.

The following problem shows that after a limited number of scaling phases we
can shrink an arc.

Problem 7. Suppose at the end of phase A, A < |b(7)|/(4n?) for some node 1.
Then there is an arc incident to 7 that can be shrunk.

at least 2nA.

First, note that the excess at 1 is less than 2n/A since the total excess in the network
is less than that amount. Suppose b(i) is positive. The least amount leaving @ is
b(i) — e(i). This can go oul on no more than n — 1 arcs, so one arc must have flow

Problem 8. Show that the first arc is contracted after O(logn) scaling phases.

the conditions of the previous problem.

Initially, b(z) = A for some i. After O(logn) phases, A is small enough to satisfy

If this could be repeated, then it would lead to O(nlogn) applications of the
shortest path algorithm. Unfortunately it cannot, for the nodes created by con-
traction may have very small b(k) but large excesses. Many phases are required to
push A small enough. To fix this, you must identify when this anomalous result
occurs and create special augmentations to fix it. See the Orlin paper for details.

One practical question.

Problem 9. Is arc contracting likely to be useful in practice? Should you add
it to a capacity scaling code?

8. GENERALIZED NETWORKS 45

8. Generalized Networks

Read [27]

Up until now, we have implicitly made an important assumption on how flows
move: whatever enters an arc leaves an arc. In many important applications, this
assumption does not hold. Rather, a certain proportion of the flow that enters
will leave. This proportion may be less than 1 (flow is lost) or greater than 1 (flow
is gained). Because of leakage, not all the flow entering a water pipe or electical
wire may leave the other end. The ability to modify the flow along an arc is also
useful for modeling purposes, converting one unit into another. This truly is a
useful generalization.

Unfortunately, it does not seem simple to optimize such networks, despite a
large amount of work done. For instance, the only work done on solving minimum
cost generalized flow has been simplex based methods. Even there, such funda-
mental questions as a combinatorial anti—stalling rule are not known. No fully
combinatorial method is even conjectured (if anyone is looking for a dissertation
topic, I can’t make it any more obvious).

Recently, matters have improved for the maximum generalized flow problem.
In this very impressive paper, the authors have given polynomial algorithms for
finding the maximum generalized flow. The algorithms are fairly complicated, but
should be reminiscent of the minimum cost flow algorithms we have discussed.
This is no coincidence. In 1977, Truemper ([61]) noted the relationship between
maximum generalized flow and minimum cost (pure) flow.

We begin with a few definitions. Every arc in a generalized flow problem has
a multiplier a,; associated with it. If f(z,) units of flow leave ¢ then a;; fi; units
enter j. Based on this, the conservation of flow constraint for 7 is

Zajifji - Zfij = 0.

An arc with multiplier greater than 1 is a gain arc; one with multiplier less
than 1 is a loss arc. The gain of a directed cycle of arcs is the product of the arc
multipliers around the cycle.

A generalized flow satisfies conservation of flow at all nodes except a given node

Problem 1. In pure maximum flow, we have both a source and a sink. Why
is that not required here?

Cycles with gain less than 1 act as sinks (they can absorb flow); cycles with gain
greater than 1 act as sources (they create flow). Only cycles with gain equal to I do
not create or destroy flow.

46 ITI. MINIMUM COST FLOW

Although we call s the source, in keeping with the paper, we will attempt to
maximize the flow in to s.

We define the residual graph as we did for pure network flows, except the mul-
tiplier on a reverse arc is the inverse of the multiplier on the forward arc.

Problem 2. What is the upper bound on the reverse arc of an arc with multi-
plier 2 and flow 57

| 10.

One fundamental result, due to Onaga ([47]) relates a generalization of aug-
menting paths to optimal flows. A generalized augmenting path (GAP) is a flow
generating cycle together with a directed path from a node on the cycle to s (the
path may be empty).

Problem 3. Prove that if the residual graph contains a GAP then the flow is
not optimal.

If the graph contains a GAP, then augmenting around it creates flow at any chosen
node. This flow can then be sent to s along the path.

Proving the reverse implication, though involved, is just like the case for pure
network flows. We prove a decomposition theorem, assume that we have a nonop-
timal flow, take the difference between the optimal flow and the nonoptimal flow,
and show that this implies a GAP. Here is the decomposition theorem. Given a
generalized flow, we can write it as the sum of

(1) A flow generating cycle and a path to s,

(2) A cycle with unit gain, and

(3) A pair of cycles, one with gain ¢ 1, one with gain | 1 and a path from the
first to the second.

each of which has flow values that satisfy conservation of flow (except at node s).

Problem 4. Prove this decomposition.

Let f be the flow, and G' the subgraph of G with arcs with positive value. By conserva-
tion of flow G' must be empty (in which case we are done) or it must contain a cycle.
If the cycle has gain 1, it is of type 2, so we can cancel the minimum flow around the
cycle. Otherwise, assume G' has a flow creating cycle. After subtracting flow from
the cycle, keeping conservation of flow) until one arc gets value 0, the tail of that node
must have flow leave on some noncycle arc. We follow this flow (from conservation
of flow) until it either reaches s, or it is destroyed by a cycle. This results in type 1
or type 3 component respectively. The proof now follows by induction.

(Hmmm - the proof in the paper is more general and nicer).

8. GENERALIZED NETWORKS 47

Problem 5. Show that if a flow is not optimal, then there is a GAP.

Consider an non-optimal flow f and the optimal flow f*. f* —f is a flow so it can
be decomposed as above. Since more enters s under f* than f, there must be at least
one component of type 1. Since everything in f*— f is in the residual graph of f, the
theorem follows.

So our goal is simply to find and augment around GAPs. This turns out to
be simpler if we know where the cycle is. We can transform the problem so that
every flow—generating cycle goes through the source. The idea is simple: saturate
all gain arcs and add some arcs to imitate their effect. The transformation begins
by setting the flow on every gain arc to its upper bound. In general, this is not
a feasible flow: there is either a positive or negative excess on each node. If the
excess is negative (more leaves the node than enters it) we add an edge from s to
¢ with a very high multiplier and capacity equal to minus the excess divided by
the multiplier. If the excess is positive, then we add an edge from ¢ to s with high
multiplier and upper bound equal to the excess. We then take the residual graph
together with these added edges as our transformed network. A maximum flow
in this network can be transformed into a maximum flow in the original network
just by adding in the flows we initially set. (wrestle, wrestle). The transformed
problem is called the restricted problem.

Problem 6. Take a small example, do the transformation, and convince yourself
of its validity.

‘A lot of handwaving.

Problem 7. What can be said about all the flow generating cycles?

‘At least initially, they all go through s, because all gain arcs are incident to s.

One simple approach is to find a gain cycle and cancel it (the advantage of
working with the restricted problem is that we no longer need to find a path back.
We will have to prove that we do not destroy the structure of the restricted problem
(say by creating gain cycles not through s), but we save that for the moment.

Just as we could apply a price function in minimum cost flow, we can relabel the
nodes of the graph changing the arc multipliers and capacities. Consider rescaling
the units exiting an arc by some positive multiplier (say changing the flow leaving
the network from pennies to dollars).

Problem 8. What changes in the network are required to keep the network
“the same”?
If the multiplier is p;, we must replace u;; with u;;/u; and the multiplier a;; with

aij * flif ph-

48 ITI. MINIMUM COST FLOW

We call this updated network the relabeled network. It is straightforward to
prove that a network and its relabeled version have many similar properties: one
can convert a flow from one to the other and the residual networks are the same.

We can define a labeling that helps us find gain cycles. We can find the highest
gain path from each 7 to the source. Suppose we take p; as the inverse of this
value for each ¢ (with us = 1).

Problem 9. Show that the relabelled multiplier for every arc not leaving s is
< 1. Show that for every node ¢ with a path to s that there is a path of unit arcs
in the relabeled graph.

The key is to recognize that finding gain paths is evactly like finding shortest paths
where we use the logarithm of the multipliers as distances. This then follows from the
principle of optimality.

Problem 10. What does the most efficient (i.e. highest gain) cycle look like.

Itis a (i,s) path of unit ares together with an arc from s to ¢ with maximum multiplier.

The only thing left to prove is that augmenting around the maximum gain cycle
doesn’t add any gain cycles not through s and, furthermore, does not increase
the value of the maximum gain cycle. The proof of this is analagous to similar
facts about cancelling the minimum cost cycle on a graph, so is omited (i.e. I am
wimping out).

This algorithm is not very good. It behaves like augmenting along a minimum
cost path for minimum cost flow: the objective may change by only a minimal
amount. For this case, the minimal amount may be very small indeed. It is
possible to improve this somewhat, by augmenting along many cycles of the same
value. Suppose the maximum gain is « and that there are a number of edges in
the relabelled graph with value «.

Problem 11. How can you find the maximum flow using only cycles with gain
a?

This is simply a (normal) mazimum flow problem in the graph defined on the unit
edges and those with gain .

At the end of this, there are no cycles of gain « so the bound is based on the
number of different values of cycle gain. For example, if all multipliers are powers
of two, then this algorithm runs in polynomial time.

The paper continues with algorithms that give a polynomial bound. The first
is like the above, but it uses a minimum cost flow routine to work with a larger
graph than just those with unit flow or gain «. The second looks for GAP that
are large enough to significantly improve the objective. There is clearly room for
improved algorithms.

9. THE NETWORK SIMPLEX METHOD 49

One interesting exercise is to see if the reliance on restricted graphs is necessary
or merely convenient. I lose a lot of feeling for the problem as soon as we move
to the restricted problem and it would be nice to work with the original problem
directly.

Overall, though this paper is a start, the application of network ideas to gener-
alized networks is almost wide open.

9. THE NETWORK SIMPLEX METHOD

The network simplex method is an alternative for solving network flow problems.
In this section, we examine the network simplex method and its specializations to
such problems as the shortest path problem and the maximum flow problem. We
also examine extensions to generalized networks and some possible extensions to
matchings.

9.1. Fundamental Algorithm. Recall the minimum cost flow problem: Given
a graph with vertices V', each with a supply b;, and arcs A, each with a cost ¢;;,
the problem is to

Minimize g CijTij

(1) Z i + Z xj; =b; forall 2

{5:(é,5)eA} {5:(4:0)€A}
(2) xi; > 0

This problem is simply a linear program so solutions can be found by using
the simplex method. The simplex method can be steamlined considerably by
exploiting the network structure. This both clarifies the algorithm and greatly
enhances its practical effectiveness.

This is a (very) brief review of the simplex method for linear programming.
Consider the problem Minimize {cx : Az = b,a > 0}. A fundamental concept
is that of a basis. A basis is a maximum size set of columns (variables) that is
linearly independent (that is, no column can be expressed by a linear combination
of the others). Given any basis B, there is an associated primal solution x = B~
and an associated dual solution y = cgB™1. A basis with corresponding x > 0 is a
feasible basis, and x is a basic feasible solution. Every variable j has a reduced cost
measuring the improvement in objective if j were to enter the basis. The reduced
cost for j is ¢; — ya; where a; is the column associated with 7 in A.

50 ITI. MINIMUM COST FLOW

The simplex method begins with a basic feasible solution with the associated
dual values. The reduced cost for each variable is calculated. If no variable has
negative reduced cost, the current solution is optimal. Otherwise, some variable
with negative reduced cost is chosen to enter the basis (the entering variable).
Some variable must be found to leave the basis. This is done by calculating the
change in value for each basic variable as the value of the entering variable is
increased. The first variable to reach 0 is chosen as the exiting variable. If more
than one variable reaches zero simultaneously then any such variable can be the
exiting variable. The solution and duals are recalculated for the current basis.
This completes one pivot. Pivots continue until no variable has negative reduced
cost.

To specialize this method for network problems we take advantage of the special
structure of the basis. First we need to determine the size of the basis. An obvious
limit is n.

Problem 1. Is it possible to find n linearly independent columns for a network
problem?

No. The sum of the n rows is 0, so there must be less than n linearly independent
columns.

We will assume that GG is connected. We know from the above that there can
be no more than n — 1 variables in a basis. To show that exactly n — 1 suffices,
examine the relationship among arcs in the basis.

Problem 2. Can some of the arcs in a basis form a cycle?

No. Multiply some of the arcs by -1 so all arcs around the cycle go in the same
direction. Now take any arc (i,5) on the cycle. The sum of all the other arcs is
exactly -1 times (i,7).

A set of n — 1 arc without cycles is a spanning tree of the underlying undirected
graph if we ignore directions. To show that these are linearly independent, we
examine the corresponding matrix. Examine the matrix of a spanning tree. One
row is redundent (from problem 1) so we will delete row 1. Now rename the rows
2,3, ...,n and the columns ay, as,... ,a, so that one end of a; is ¢ and the other
is j for some j < 1.

Problem 3. Show that such a reordering is possible. What does the resulting
matrix look like? What does that imply about the arcs?

Beginning at node 1, examine the nodes in breadth—first search. Fach node, when
labelled, is adjacent to exactly one labelled node. The edges in this order give the
required ordering.

The resulting matrix is upper triangular, hence of full rank, which is n — 1, since we
deleted row 1.

9. THE NETWORK SIMPLEX METHOD 51

Problem 4. Given a basis and a supply vector b, show how to find the corre-
sponding basic solution.

Using the reverse order as in Problem 3, simply assign flows to the arcs as required
by feasibility.

It is equally straightforward to find a corresponding set of dual values. We are
looking for w1,v2,... ,%,. Since the basis has rank n — 1, one of these values is
arbitrary, so we will set y; = 0. Given that, and the requirement that the reduced
cost for basic arcs is zero, the remainder of the duals can be found.

Problem 5. Give a method for finding the dual solution.

Using the node order of Problem 3, assign dual values to keep the reduced cost of basic
arcs . Since every node, when examined, will be adjacent to an examined node, the
dual value will be determined.

Given the primal and dual solution, we now try to find an arc with negative
reduced cost.

Problem 6. What is the reduced cost of arc (7, j)?

Cij +yi—Yyj.

The calculation of the exiting arc is streamlined considerably by the simple way
in which flows must change if the flow on the entering arc is increased. Let (¢,)
be the entering arc. The basis tree, T', together with (7, j) has exactly one cycle.
Some of the arcs on the cycle (the forward arcs) are in the same direction as (¢, k);
some (the reverse arcs) are opposite in direction.

Problem 7. Show that if the flow on the entering arc is increased to ¢ then
increasing the flow on the forward arcs by 6 and decreasing the flow on reverse
arcs by ¢ preserves primal feasibility.

Any node not on the cycle is unaffected by this flow change. Consider node k on the
cycle. If it is adjacent to two forward arcs then one must be (i, k) and the other (k,j)
for some v and j, so flow is conserved. Similarly for the case of two reverse ares. One
forward and one reverse must either be (1,k) and (j,k) or (k,i) and (k,j). In either
case, since the flow on one is increased by 6 and the flow on the other decreased by

0, there is no net change.

Problem 8. Which arc(s) are eligible to leave the basis?

Any reverse arc that has minimum flow among all reverse arcs.

Finding an initial feasible basis can be done in many standard ways (adding
artificial arcs is one way). This completes the generic network simplex method.
The advantages over the general simplex method occur throughout the algorithm:
every step is simplified. The disadvantages are the same, however. The simplex

52 ITI. MINIMUM COST FLOW

method as presented is not formally an efficient algorithm. In fact, without fur-
ther modification, the algorithm may cyecle by repeating a basic feasible solution
without proving optimality. In the next sections we will see how to arrange our
arbitrary choices (choice of entering and exiting variables) to ensure finiteness, and
even provide polynomial bounds for several interesting cases.

9.2. Prohibiting Cycling. Cunningham ([12]) gives a very simple, and very
elegant method for avoiding cycling. This method is independent of the rule used
to choose the entering variable: it only restricts the choice of exiting variable. We
can think of the basis tree T' as being rooted at an arbitrary node (say, node 1).

First note that cycling can occur only during a sequence of degenerate pivots
(pivots which do not change the flow). Therefore, cycling can only occur when
there are degenerate arcs (arcs in the basis with zero flow). Cunningham restricts
how these arcs can be in the basis: every arc in the basis with zero flow is directed
away from the root. Such a basis is called strongly feasible. There are two parts
to his proof: he first shows that it is possible to pivot from one strongly feasible
basis to another; he then shows that strongly feasible bases prohibit cycling.

Beginning with a strongly feasible basis, there is a very easy, appealing rule for
pivoting to another for any entering arc (7, j). Examine the two paths from ¢ to
the root and from j to the root. There is a unique node k that is on both paths
and is maximal (in terms of arcs) distance from the root. This node is called the
join. Cunningham’s rule is simply to begin at the join, traverse the cycle in the
same direction as (7, j) and choose the first eligible arc as the exiting arc.

Problem 1. Show that if the pivot is nondegenerate, the resulting basis is
strongly feasible. Now do the same for the case of a degenerate pivot.

If the pivot is nondegenerate, the candidates for leaving are exactly those that end up
with zero flow. Taking the first from the join in the direction of the entering arc (say,
at node k) implies that all other arcs with zero flow will be between k and the root
and pointed towards k, hence away from the root.

If the pivot is degenerate, then any zero flow arc between the join and i (where (¢,7) is
the entering arc) will point away from the root, hence be a forward arc and ineligible
to exit the basis. So the exiting arc is between j and the root. By taking the first one,
all remaining zero flow arcs will still point away from the root.

To show that the method prohibits cycling we show that during a degenerate
pivot the sum of the duals decreases. Repeating a basis would require an increase
in this sum, which can only occur during a nondegenerate pivot.

Problem 2. Let (¢,7) be the newly entered arc. Examine the subtree “below”
(7,7). What happens to the duals of nodes not in that subtree? What about those
in the subtree? What happens to the sum of the duals?

9. THE NETWORK SIMPLEX METHOD 53

Since (1,7) caused a degenerate pivot, it must point away from the root. The duals
above (2,7) do not change. Those below are changed as follows: we need ¢;j+y;, —y; =
0. But before this value was less than 0. Since y; does not change, y; must have
decreased. Now for any other node below (i,7), the same arcs are in the basis, so, by

induction, they must each decrease also.
Therefore, the sum of duals decreases.

This simple method suffices. It also leaves us complete flexibility in choosing the
entering arc. In the next section we will see how different choices for the entering
arc can avoid exponential sequences of degenerate pivots.

9.3. Prohibiting Stalling. Strong feasibility avoids the possibility of repeat-
ing a basis. However, an exponential number of bases may still be required. To
date, there is still no rule known that guarantees a polynomial bound on the num-
ber of iterations required by the network simplex method. Cunningham ([13])
gives rules that give only a polynomial number of consecutive degenerate pivots
when combined with his method of strongly feasible trees.

Let Ty, T4, ..., T, be a sequence of degenerate pivots, each with primal solution
2°. We break this sequence into consecutive stages: during each stage each arc
has nonnegative reduced cost (i.e. is not eligible to enter the basis) at least once.
In a moment we will see that the number of stages is bounded, but first we will

examine a rule that guarantees that the length of a stage is not too long.

Problem 1. Consider the entering edge rule that arbitrarily orders the arcs
and enters the first arc with negative reduced cost. Then, if arc ¢ is entered, the
next iteration starts examining the arcs at + 1 and so on. How long can a stage

be? (This rule is called Least Recently Considered (LRC)).

The maximum number of pivots in a stage is O(|F|). When arc i is examined either
it is not eligible to enter the basis, or it enters the basis immediately after which it is
ineligible to enter the basis. Therefore, after at most 1 pivots, ¢ is ineligible to enter
the basis.

So we know that a stage is not too long. Now we will show that there are not

too many stages. The idea is to show that certain dual values get fixed after each
stage of the sequence of pivots. Examine the connected components of the graph
induced by edges with strictly positive z° values.

Problem 2. Suppose node 7 is in the same connected component as the root.
What happens to the dual of ¢ during the pivots?

the root to the node stay in the basis, so its dual remains the same.

Its dual does not change. Since every arc with ¥’y remains in the basis, all edges from

54 ITI. MINIMUM COST FLOW

Now examine all nodes that use exactly one edge with value 0 on the unique
path to the root in T),. We would like to show that the duals for these nodes are
fixed after the first stage.

Problem 3. For some node ¢, suppose the dual is not fixed after the first stage.
What is the relationship between the dual value after the first stage and the final
dual value? What does that imply about the reduced cost of the zero edge in T},
used by ¢ in the first stage? What can you conclude?

Since the dual is not equal to the final value, and duals only decrease, it must be larger
than the final value. Now, examine the zero flow arc (j,1) from ¢ to the root in T, fir
any pivot in the first stage. Its reduced cost is w(j)—7(i)—c(2,7) (by strong feasibility,
since all zero flow ares point away from the root). But 7(j) does not change during
the stage (by Problem 2), so this is less than the final reduced cost of the arc (since
7(1) decreases). But (j,i) is in the final basis tree, so the final reduced cost is 0.
Therefore, the reduced cost for (j, 1) is less than 0 for the first stage, contradicting the
definition of stage. Therefore, after the first stage, such dual values are fixed to their
final value.

It is straightforward to modify the argument in Problem 3 to be an induction
on the number of zero edges on the path from 2 to the root in 7,,. This means that
the number of stages is no more than the number of arcs in a basis with zero flow.

Cunningham examines three other rules, two which reduce the pivots per stage
to O(|V|). He also gives an example of an exponential degenerate sequence for
Bland’s rule, which takes the first edge elgible to leave the basis (always starting
at edge 1).

9.4. Other Papers. Recently there have been a number of interesting papers
on the network simplex method. These are listed here, with the intention that
someday the notes will be continued to include some or all of these papers.

Specialization to Shortest Paths. Goldfarb, Hao, and Kai ([32]).

Specialization to Maximum Flow. Goldfarb and Hao ([31]).

Non—polynomial, But Subexponential Bounds. Tarjan ([59]).

Dantzig’s Pivot Rule, and Variations. Orlin ([48]) and Ahuja and Orlin ([3]).

Generalized Networks. Elam, Glover and Klingman ([20]) and Trick ([60]).

CHAPTER 1V

Matchings

1. Introduction

The matching problem is a cornerstone problem in combinatorial optimization.
Despite the fact that no polynomially sized linear program for this problem is
known, polynomial algorithms exist for solving this problem. In these notes, we
examine a selection of these algorithms, ranging from augementing path algorithms
of the 1950s and 1960s to facet generation and randomized algorithms of the 1980s.

While we concentrate on algorithms, it should be noted that there are many
applications for the matching problem. Some include facility design [44], plot-
ter movement [], crew scheduling [6], and machine scheduling [24]. Furthermore,
matchings have been used as a subroutine for the traveling salesman problem
[10], the chinese postman problem [18], and the set covering problem [46]. The
matching model is truely a useful model.

In these notes, we concentrate on the various techniques for solving matching
problems. In order to simplify the exposition of these techniques, we concentrate
on a simple case: the cardinality matching problem, where our goal is to maximize
the number of edges in a matching. In the final sections we will examine the
conceptually similar but more difficult weighted matching problem.

The following is an outline of the notes:

(1) Bipartite matching, cardinality case. Augmenting path method, theorems
of Berge, Hall, and Konig.

(2) General matching, augmenting path algorithms. Algorithm of Edmonds,
theorems of Tutte and Gallai and Edmonds.

(3) Polyhedral structure, cut generation algorithms. Algorithms of Grotschel
and Holland and Trick using results of Padberg and Rao.

(4) Randomized/Parallel algorithms. Determinants, algorithm of Mulmuley,
Vazirani, and Vazirani.

(5) Weighted Matching. Algorithm of Edmonds.

99

IV. MATCHINGS

2. Bipartite Matchings
Given a graph G = (V, FE), M C E is a matching if every node in V is incident

to at most one member of M. A matching is perfect if every node is incident
to exactly one member. The mazimum cardinality matching problem is to find a
matching of largest size. We begin with the case (G is bipartite with bipartition

(S, T). The number of nodes of G is n, the number of edges m.

Problem 1. Show that in this case, the cardinality matching problem is a

special case of maximum flow.

Add two nodes s and t. Add edges of capacity 1 from s to every member of S, and
edges of capacity 1 from every member of T' to t. Set the capacity of every edge of E
to infinity. A mazimimum flow in this graph corresponds to a mazximum matching.

Due to the simple structure of the graph and capacities, most maximum flow

theorems have simpler statements for the matching problem. The fundamental
concept is that of augmenting path relative to a current matching M. An alter-

nating path is a path in G where the edges are alternately in and not in M. An
augmenting path is an alternating path where the endpoints are not incident to

any member of M. If a node is incident to an element of M, we will say that the
node is matched. Similary, an edge is matched if it is in M. The following theorem
is due to Berge.

Theorem. M is a maximum matching if and only if there is no augmenting
path relative to M.

Problem 2. Prove the above theorem directly (i.e. don’t use knowledge about
network flows).

One direction is straightforward. If there is an augmenting path, simply reversing the
membership in M along that path creates a matching of size one larger.

Suppose M is the current matching and there is a larger matching M'. Take the
symmetric difference of M and M'. Since every node has degree at most 2 in this
graph, this consists of alternating paths and cycles. Since M’ is larger, there exists at
least one path that begins and ends with an edge of M'. It is clear that the endpoints
of the path are unmatched by M, so this is an augmenting path.

In the bipartite case, this leads to an algorithm: Search for an augmenting

path, if found augment, otherwise terminate. The following algorithm searches for
an augmenting path by finding an alternating forest. A node in the forest if an
alternating path is found to it from an unmatched S node. It is marked either

“odd” or “even” depending on the parity of the path length. Each component of

the forest is rooted an an unmatched S node.

0) (initialize) Mark each unmatched S node “even” and place into a queue Q.

2. BIPARTITE MATCHINGS 57

1) (grow forest) Remove the first member of @, ¢. For each edge (¢,7) € E, one
of the following cases is executed:
(7 unmarked, matched) Let k& be the node j is matched with. Add (¢,7) and
(7, k) to the forest, mark j “odd” and k “even;” add k to Q.
(j unmarked, unmatched) An augmenting path has been found between j and
the root of the component containing :. Augment along it.

(j marked “odd”) Do nothing.

This algorithm stops either when the queue is empty or when an augmenting
path is found. In the first case, the current matching is optimal; in the second, a
new alternating tree can be grown.

Problem 3. Why can j not have the marking “even” in the case analysis?

nodes. Furthermore, only S nodes are in (), so j is a T node.

It follows by induction that “even” nodes are always S nodes and “odd” nodes are T

Problem 4. Prove the correctness of the algorithm. What is the overall com-
plexity of this algorithm?

It follows by induction that if a node is marked, then there is an augmenting path
with the correct parity. Therefore, a claimed augmenting path really is an augmenting
path. Suppose there is an augmenting path P that is not found by the algorithm where
P starts at an S node. Let 1 by the first node of P that ts not marked, and let j be its
predecessor. If v is an S node, then (j,1) must be in the matching (by the definition
of augmenting path). But j is marked, and must be marked “odd” (since it is a T
node). But a node is marked “odd” only if its matched node is marked even. So i is
a T node. But then j is an S node and (i,j) is not in the matching, so ¢ would be
marked when j reached the front of ().

Fach edge is examined once per augmentation and there are at most n/2 augmenta-
tions so the complexity is O(nm).

Hopcroft and Karp [35] describe an implementation of this algorithm that re-

quires overall time of just O(y/nm). This algorithm (but not the complexity!) is
simply Dinics’ [15] algorithm applied to this case.

The algorithm also provides an easy way to prove various structure theorems,
which give conditions under which matchings can occur. For instance, the following
is due to Frobenius (1912). For X C S, let N(5) be the set of nodes connected to

a member of X by at least one edge.

Theorem. A bipartite graph G with partition (S,T) has a perfect matching if and
only if |S| = |T'| and, for each X C 5, | X| < |N(X)].

Problem 5. Prove the above theorem (one direction is straightforward, for the
other direction, the violating X can be found from the final alternating tree).

58

is

IV. MATCHINGS

If the graph has a perfect matching, then clearly |S| = |T'|. Also, if any set X has too
small a neighborhood, then no matching is possible.

If G has no perfect matching and |S| = |T|, then we must exhibit an X with too
small a neighborhood. Let A be the set of vertices marked by the algorithm, and let
X =5NA. A matched v € S is marked only if its corresponding j is marked. All
other nodes incident to v are marked. By the initialization, all the nodes incident to
an unmatched S node are marked. Therefore, T N A = N(X). But every node in
TNA is matched, so there is a unique corresponding element of X among the matched
nodes. But there are unmatched elements of X, so | X| > |N(X)|, as needed.

Another theorem by Kénig (1936) is particularly nice, for it provides a min—max

result. A cover of the edges of GG by nodes is a subset of nodes so that every edge

incident to at least one member of the cover. Let 7(() denote the minimal node

cover of (5.

Theorem. I[f GG is bipartite then the mazimum number of edges in a matching

equals 7(G).

wi

Problem 6. Prove the above theorem.

Let v(G) be the size of a maximum matching. Let M be any matching and C be any
cover. Fvery edge of M must be incident to at least one member of C' and every
member of C is incident to at most one member of M. Therefore, |M| < |C|, so, in
particular, v(G) < 7(G).

Let M be a mazimum matching. If M matches all elements of S then S is a cover
of the same size as M. Otherwise, let A be the nodes marked by the algorithm. Let
S'=XNS andT'= XNT. NowT" are all matched, since M is maximum. Consider
the set X = (S—=S"YUT'. For any edge (i,7) eitheri or j is matched (by maximality).
If © is matched, either i is not marked (so1 € X) ori and j are marked (so j € X).
If j is matched, then either it is marked (and in X) or not, in which case @ is not
marked (so it is in X). Therefore X is a cover. Furthermore, for an edge (1,5) € M
either 1 or j, but not both are in the cover, so | X| < |M]|, as needed.

According to the folklore, after the work of Berge and Norman and Rabin, the

feeling was that there was no more to do on matchings. Edmonds (1965) proved
how wrong they were.

Problem 7. Adapt the algorithm for nonbipartite graphs. Where does the

algorithm fail?

‘ Where indeed? See next section.

3. General Matchings

To adapt the previous algorithm, we can no longer rely on the fact that S nodes
1l be marked “even” and T' nodes marked “odd.” The following algorithm adapts

3. GENERAL MATCHINGS 59

the bipartite algorithm as much as possible:

0) (initialize) Mark each unmatched node “even” and place into Q.
1) (grow forest) Remove first node of @), i. For each edge (7,j) € F, execute
one of the following cases:
(7 unmarked, matched) Let k& be the node j is matched with. Add (¢,7) and
(7, k) to the forest, mark j “odd” and k “even;” add k to Q.
(j “odd”) Do nothing.
(7 “even,” in different component than 7) An augmenting path has been found
between the roots of the two components. Augment along it.

(j “even,” in same component as ¢) 7777

It is in the last case that there is some problem. We have found an odd length
augmenting path to a node for which we previously found an even length aug-
menting path. Two obvious solutions are to ignore the problem (give the node the
label it first had) or to allow nodes to be labelled both odd and even, placing only
nodes with even labels in the queue.

Problem 1. Show that these solutions will not work, the first because it misses
some augmenting paths, the second because it identifies some “paths” that are
not paths at all.

Both of the counterexamples in the above problem rely on a cycle with an odd
number of nodes where every node on the cycle except one is matched by edges of
the cycle. Edmonds ([16]) showed that this construct (which he called a blossom)
is the only construct that causes difficulty.

Problem 2. Show that there is a blossom when the last case of the algorithm
occurs.

Since both ¢ and j are in the same component their paths back to the root must meet
at some node k. The paths from k to 1 and from k to j must have the same parity
and be alternating. Together with (i,j), this forms an odd alternating cycle.

Edmonds’ idea was to shrink the blossom into a single node. To shrink a blossom
B, replace the nodes of the blossom by a single node b. If (¢,7) is an edge in the
original graph, with « € B in the blossom and j ¢ B, then create an edge (b,).
The key idea is that a blossom is hypomatchable: for every node k in the blossom,
there is a matching within the blossom that hits every node except k. Edmonds
proved the following theorem:

Theorem. If B is a blossom of G' with respect to M, then there is an augmenting
path in G if and only if there is an augmenting path in G with B shrunk.

Problem 3. Prove the if part of this theorem.

60

IV. MATCHINGS

Let P be the path in G with B shrunk. If the path avoids b, then it is a path in G. If
it uses B, then either b is an endpoint or an intermediate point of the path. In the
first case, let j be the node of B the path uses and let © be the unmatched node of B.
There are two paths from j to i in B: one odd length and one even length (which may
be empty). The even length one added to the remainder of P is the augmenting path.
Stmilarly, if it goes through B, one direction around the cycle will be the augmenting

path.

Now, we complete our algorithm with the following case:
(j “even,” in same component as ¢) Identify the blossom and shrink it to a

single node.

We call a shrunk blossom a pseudonode.

Problem 4. Show that every blossom is an even node.

The paths found by problem 2 meet in a node which is either the root or has degree at
least 3. In either case, the meeting node is an even node, so collapsing the cycle will
result in an even node.

To prove the only if part of Edmonds theorem, it is easier to use duality and

the results of the algorithm. We define an odd cover of a graph to be a collection
of odd sets so that for every edge either

if

i) it is incident to a singleton of the cover, or

ii) both ends are contained in some odd set.

We define the size of an odd set to be 1, if the set is a singleton, and to be r
it has size 2r 4+ 1 if it is a larger odd set. The size of a cover is the sum of the

sizes of its sets.

Problem 5. Show that every odd cover is at least as large as every matching.

FEach singleton is incident to at most one matching edge. FEach larger set of size r
contains at most r matching edges. Therefore, the size of the set is at least the number
of edges in the matching.

Problem 6. Suppose our algorithm ends without an augmenting path. Show

that the current matching is optimal.

Form an odd cover as follows: take every odd node as a singleton; every outermost
blossom as an odd set; and one arbitrary singleton from the unmarked nodes and
the remaining unmarked nodes in a single odd set. FEvery edge of GG is either in a
blossom, incident to an odd node, or has both its endpoints unmarked. Therefore, this
collection of sets is an odd cover. It is straightforward to see that the size of this odd
set is exactly the number of matching edges.

Since we have a matching and an odd set with the same size, the matching must be
mazimum (by problem 5).

3. GENERAL MATCHINGS 61

Problem 7. Show that every augmenting path found by the algorithm is valid.

An augmenting path is found when ¢ and j are in different components and are both
marked even. Therefore, there is an odd alternating path between there corresponding
roots (the even paths together with (¢,7)). By problem 3, we can expand the blossoms
to find an augmenting path in G.

The time complexity of this algorithm depends on the data structures used to
handle the blossoms. A straightforward bound is O(n*). Lawler ([39]) and Gabow
([25]) give implementations that reduce this to O(n*), and other implementations
reduce it further to O(nm). The adaptation of Dinics’ algorithm done by Karp in
the bipartite case has been generalized by Even and Kariv ([21]) and Micali and
Vazirani ([43]) to give a O(y/nm) bound.

As in the bipartite case, this algorithm gives simple proofs of a number of
previously known structure theorems. We have already proved a min—max result
regarding odd covers first proved by Edmonds. Another theorem is by Tutte
(1947). Let ¢(G') be the number of components of G with an odd number of
nodes.

Theorem. G has a perfect matching if and only if ¢(G — S) < |S| for all S C V.

Problem 8. Prove the above theorem.

Since at least one node from every odd component must be matched to some member
of S, if G has a perfect matching then ¢(G — S) < |S| for all S.

For the other direction, assume that G does not have a perfect matching. Let S be
set set of nodes marked “odd” by the algorithm. Fach even node or blossom forms a
component of GG — S. There are more even nodes and blossoms than odd nodes, so

(G —8) > [8].

Finally, an important theorem related to the set of all matchings of a graph is
the Gallai-Edmonds decompostion theorem. Let D(() be the set of all nodes that
are not covered by at least one maximum matching of . Let A(G) be the set
of nodes adjacent to at least one element of D(G). Let C(G) be the remaining
nodes. One crucial element of the Edmonds—Gallai stucture theorem is:

Theorem. If M is any mazimum matching of G, then

i) within each component of D(G) it misses exactly one node,

ii) it contains a perfect matching of C(G'), and

iii) every element of A(G) is matched with a node in distinct components of
D(G).

We can identify these sets directly from the algorithm: D(() are those nodes
marked “even” or those within blossoms, A((7) are those marked “odd,” and C'(()
are those not marked by the algorithm. To prove this, we would have to show that
a node is marked even or in a blossom if and only if it is unmatched by some
maximum matching.

62 IV. MATCHINGS

Problem 9. Prove the only if part (i.e. if it is marked even or in a blossom,
then it is unmatched by some maximum matching).

Every tree can be rerooted at any even node, leaving that node or blossom unmatched.
Every node within a blossom can be unmatched by hypomatchability.

For the if part, see the text by Lovdsz and Plummer [41].

4. Cut Generation
Read [34].

In the previous section, we saw an augmenting path algorithm for the cardinality
matching problem. In the next two sections, we will examine radically different al-
gorithms for this problem: a cut generation approach and a randomized algorithm
based on taking determinants.

The cut generation approach attempts to treat the matching problem as a linear
program. First we need to find a suitable formulation. We begin with the most
obvious constraints, the requirement that at most one edge be incident to each
node. The problem becomes:

Maximize szj
(3) Z x;; <1 forallz
{7:{i.5}€E}
(4) 2y 20

Problem 1. Prove that this formulation is not sufficient to define the matching
problem.

‘ The triangle provides such a counterexample.

Another obvious constraint, motivated by the blossoms of the augmenting path
algorithm, is that no odd set can be perfectly matched by itself. In other words:

(5) > zi; < (]S]=1)/2 forall S CV,S odd.
{1,j}€E©€S jeS

Problem 2. Prove that adding these constraints is sufficient to define the
matching problem.

The dual of (1), (2), and (3) is simply the odd cover problem. Since the constraints
are valid, this proves that they suffice.

4. CUT GENERATION 63

Unfortunately, there are an exponential number of constraints of type (3). It
is not known if there is a formulation of the matching problem that has only a
polynomial number of constraints.

It is possible to use the ellipsoid algorithm to solve the matching problem using
the above constraints. The ellipsoid algorithm requires a separation algorithm:
given a point y, determine if y is in the polytope and, if not, give a violated
constraint. It is straightforward to provide separation routines for constraints (1)
and (2). It is not obvious how to find a violated constraint of type (3). Padberg
and Rao [51] provide an algorithm for this problem. For any y satisfying (1) and
(2) they give an algorithm that will decide if y satisfies (3), and, if not, will give
an S whose corresponding constraint is violated.

Suppose we have a fractional solution y for GG = (V, E'). We create an auxilliary
graph G’ as follows: beginning with G, we place a capacity on each edge equal to
yi;. We then add a node (the slack node) to the graph and edges between each
node and the the new node. These edges represent the slack variables and have
capacity equal to the value of the corresponding slack variable.

Problem 3. Show that a violated constraint is exactly an odd set in G’ not

containing the slack node where the edges leaving the set have total capacity less
than 1.

Suppose we have a violating |S|. The amount on the edges within |S| is more than
(|S|—=1)/2. But, by the constraints (2), this means the amount leaving S is less than
S| =215~)2 < 1.

For the other direction, suppose we find an S not including the slack node with value
k leaving it. The amount within it must be no more than (|S| — k)/2. Therefore, if
k <1 then S corresponds to a violated inequality.

The problem becomes finding an odd set with the minimum capacity leaving
it. If the problem was merely to find a set with minimum capacity leaving it, we
could solve this by standard maximum flow techniques.

Problem 4. Give an algorithm for finding a set with minimum capacity leaving
it (hint: solve O(n?) maximum flow problems).

Sitmply find the minimum cut between every two pairs of nodes and choose the mini-
mum cul.

Gomory and Hu [33] give a faster algorithm for problem 4 using only O(n)
maximum flow calculations. The idea is to create a cuttree for the graph. A
cuttree is a tree that represents the minimum cuts for all pairs of nodes in an
undirected graph. FEach are of the tree has a label; to find the minimum cut
value between to nodes, find the minimum label on the unique path between them
in the tree. Removing the minimum edge breaks the tree into two pieces which
corresponds to the partition of the nodes to give the cut value.

64 IV. MATCHINGS

The Gomory and Hu algorithm is as follows:

0) Place all nodes in a single group.

1) Choose two nodes in a group. Contract all other groups; find a maximum
flow between the two nodes.

2) Use the cut to divide the group into two smaller groups, adding an edge of the
cuttree between them. If there is no group of size at least 2, then stop. Otherwise
go to step 1.

Padberg and Rao show that it is possible to find an odd cut by forming the
cuttree as above. The minimum odd cut corresponds to the minimum weight edge
of the cuttree whose removal leaves a component with an odd number of nodes
(not counting the slack node). It is clear that such an edge corresponds to an odd
cut. It is not so clear that it gives the minimum odd cut. Let C' be an optimal
odd cut and let (5, 5") be the bipartition of nodes induced by the cut. Let T be
the cuttree generated. Examine the edges T" C T that correspond to odd cuts in
T. Clearly, every node in the tree is incident to at least one member of 7" and
the degree of T" at each node is odd. Now examine the nodes corresponding to
S in T”. Since S has an odd number of nodes, there must be an edge in 7" from
some element of S to an element in S’. This edge is the minimum cut C” between
its endpoints, so the size of C’ is less than or equal to the size of C'. But, by the
definition of 7", C" is an odd cut, so it is a minimum odd cut.

This gives an algorithm for matching: Use the ellipsoid algorithm and the sep-
aration routines given. Grotschel and Holland ([34]) replace the ellipsoid method
with the simplex algorithm to give a cut generation technique similar to that used
for the traveling salesman problem. The algorithm has an exponential worst case
bound but may work well in practice. The algorithm is:

0) Create a linear program with constraints (1) and (2).

1) Solve current linear program. If solution is integer, the solution is optimal.
Otherwise proceed to step 2.

2) Generate violated constraint(s) and add to linear program. Go to step 1.

Creating the modified cuttree is a very expensive operation. Grotschel and
Holland provide some heuristics for finding violated inequalities. Only if these
heuristics fail do they resort to the cuttree.

Problem 5. Give a very quick algorithm to determine if there is an odd set
with capacity 0 out of it.

Delete all edges with capacity 0 in G'. An odd size connected component corresponds
to an odd set with 0 leaving it.

Trick ([60]) suggests replacing the simplex code with a generalized network with

5. DETERMINANTS AND A RANDOMIZED ALGORITHM 65

side constraints code. This code works very well provided relatively few constraints
are generated.

Everything in this section applies to the weighted matching problem. The com-
putational results of Grotschel and Holland and Trick suggest that cut generation
techniques may be comparable in speed to augmenting path techniques. There are
many more advantages. The generalization to b-matching is straightforward, as
opposed to the more complicated combinatorial algorithm. The linear relaxation
of matchings with side constraints can be solved routinely, without resorting to
lagrangian relaxation or other techniques. The main disadvantages are stability
and pathological slowness. An edge in a combinatorial approach is either in or not
in the matching. A value of 0.99 in a cut generation approach is more problemat-
ical: is it really 1, and the L.P. had round off errors, or is it really 0.997 Finally
it must not be forgotten that these methods might generate a very large number
of constraints. While the randomly generated problems tested on do generate few
constraints, real problems may require more and may be harder to solve.

5. Determinants and a Randomized Algorithm
Read [45].

The next method for solving matchings reveals a somewhat surprising relation-
ship between matching and determinants. These algorithms have a very different
feel from the previous algorithms. We begin with the bipartite case.

Consider the matrix A, where a;; = 1 if (¢,5) € F and 0 otherwise. Let det(A)
denote the determinant of A.

Problem 1. Suppose GG has no perfect matching. What is det(A)? What
if G has a perfect matching? Suppose for some G, det(A) = 5. What can you
conclude? What if ' has a unique perfect matching?

Let o denote a permutation of 1,... ,n. The definition of determinant is det(A) =
Yo sign(o)lia; 4y Fach term corresponds to a possible perfect matching. The term
will be nonzero if and only if each entry is nonzero. This occurs exactly when the
corresponding edges are in the graph. Therefore, if G has no perfect matching, the
determinant is 0. If it does have a perfect matching, it may be zero (due to cancellation
of terms) or it may not. If it is nonzero, then it definately has a perfect matching.

Finally, if G has a unique perfect matching, then the determinant will be nonzero.

So, taking determinants does not provide a characterization of graphs with
matchings. We can give a characterization by replacing the entries in A with
indeterminates. Let a;; = x;; if (1,5) € £ and 0 otherwise, where x;; are indeter-
minates.

Problem 2. Now what is the relationship between det(A) and whether or not
(G has a perfect matching? What is a drawback of this approach?

66

IV. MATCHINGS

In this case, since different terms involve different variables, no cancellation can oc-
cur. Therefore, the determinant is nonzero if and only if G has a perfect matching.

Unfortunately, the determinant may have an exponential number of terms.

Instead of using indeterminates (which require an exponential amount of time)

or 1s (which tend to cancel too much), we will use entries for A drawn at random
from the range {1,...,N}. It is possible for the terms to cancel, but it is highly
unlikely. Schwartz ([54]) shows that the probability is at most (2/N)Fl,

Problem 3. Given a 1000 edge graph, suppose 100 sets of numbers in the range

{1,...,2000} are generated and the corresponding determinant is 0 in all cases.
What is the probability that G has a perfect matching?

For each set, if G had a perfect matching, the probability the determinant is zero is
at most .001'%% = 1072°C Therefore, the overall probability is 1073°°° (which is

pretty darn small).

To extend this to the nonbipartite case, we need a somewhat more complicated

matrix. For (¢,7) € F, we will define a;; = x;; if ¢ < j, and a;; = —a;if ¢ > j. If

(Z.7

J) ¢ F then a;; = 0. The following theorem is more difficult than the bipartite

case (the problem is that since each variable appears twice, there are opportunities
for cancelation):

Problem 4. Show that det(A) = 0 if and only if G has no perfect matching.

For each permutation o of 1,... ,n, define v(0) = I;a,p;). Det(A) =3, sign(o)v(o).
Thus v(c) # 0 if and only if (i,0(2)) € E for all 1.

Now, create an auxilliary graph on V. For a permutation o, add the edges (i,0(i))
for all v. Clearly each node has degree 2 (possibly due to two edges (i,7)). Matchings
correspond exactly to those o that have no cycles with more than two edges. Suppose
there is an odd cycle for o. There is another o' that is identical to sigma except it
traverses the edges in the reverse direction. It is easy to show that v(o) = —v(o’) so
these cancel in determining the determinant.

Therefore, the only terms that contribute towards the determinant have no odd cycles.
But any graph with even cycles of length greater than 2 are simply unions of matchings.
Therefore, if the determinant is nonzero, then there is a perfect matching. To show
the converse, simply note that a perfect matching uniquely gives the o, so it cannot
be cancelled out, so a graph with a perfect matching has nonzero determinant.

Again, if we replace the indeterminates with numbers in the range {1,..., N}

then the probability of a nonzero (indeterminate) determinant equaling 0 is at
most (2/N)IFl. This gives a probabilistic algorithm that will determine if a graph
has a perfect matching with arbitrarily high probability. It is only slightly more
difficult to find such a matching (again with very high probability).

5. DETERMINANTS AND A RANDOMIZED ALGORITHM 67

Problem 5. Give an algorithm to find a perfect matching in a graph if one
exists.

Confirm that G has a perfect matching. For each edge (i,7) determine if G — (1, j)
has a perfect matching. If so, then delete (¢,7) and continue. Otherwise, place (1, j)
in the matching and continue. After m attempts, the edge set is exhausted.

One very interesting reason for examining this algorithm is its ability to be
computed in parallel. Imagine a computer with K processors, solving a problem
with an O(F) algorithm. Ideally, this computer would solve these problems in time
O(F/K). This is optimal speedup. Most algorithms do not have known optimal
speedups for any K. Consider the following variant. Suppose we allow a computer
to have any number of processors polynomial in the size of the problem. How fast
can the computer solve the problem? For an NP-Complete problem it is clear that
the computer cannot solve it in polynomial time (by any known algorithm). For
a problem in P, it clearly requires at most polynomial time. The interesting cases
are those that require less time: either logarithmic time or constant time. Very few
of the latter class are known, so researchers have concentrated on algorithms that
require time that is polynomial in the logarithm of the size of the problem. The
class of problems solvable in polylog time is called Nick’s Class or NC for short.
The class of problems that is probabilistically likely to give a correct answer is
Random NC (RNC).

Some examples of problems in NC are finding maximal independent sets, finding
a depth first search path, two processor scheduling, and, most important to us,
finding the determinant of a matrix and inverting a matrix ([52]). Together with
the above argument, this shows that determining whether or not a graph has a
perfect matching is in RNC. Unlike the case for sequential algorithms, however,
the search and decision problems for parallel algorithms do not seem to be directly
equivalent.

Problem 6. Can the algorithm given in problem 5 be run in parallel?

‘[don’t think so.

To find a perfect matching in parallel requires a much more complicated algo-
rithm. The algorithm presented here is due to Mulmuley, Vazirani, and Vazirani
([45]). Another algorithm is found in [38].

First note that if G has at most one perfect matching then there are no possi-
bilities for cancellation. This algorithm extends this to a weighted case and shows
that if a graph has a unique minimum weighted perfect matching then the deter-
minant of a related matrix is nonzero. Suppose we have a graph with weights w;;
on each edge. Create the matrix A as above replacing the indeterminates z;; with
the value 2" .

Problem 7. Suppose G has a unique minimum weight perfect matching with

68

IV. MATCHINGS

weight w. Show that det(A) # 0 and that the highest power of 2 which divides
det(A) is 2**. (This modifies the proof of problem 4.)

Using the same auzxilliary graph as in problem 4, it is easy to see that any o with
an odd cycle is still cancelled out. Now examine the permutation associated with any
minimum malching M with weight w. Its value is £22%. We need to show that any
other permutation has a higher value. Certainly this is true for any non—minimum
matching. Framine a permutation associated with even cycles. This can be seen to be
the union of two matchings, at least one with weight more than w, so that term has
value more than 22,

This gives a quick method for determining the weight of the optimal matching:

simply find the largest w so that 2°* divides the determinant.

The same argument suffices to give a characterization of which edges are in the

unique minimum perfect matching. Let A;; be the minor of A with the ith row
and jth column removed.

Problem 8. Show that (¢,7) is in the unique minimum matching if and only if

(det(A;;)2%9) /22" is odd.

a

Notice that

det(A;;)2Y = > sign(o)v(o)

oo (t)=7

FExamining the auxilliary graph, if there is an odd cycle, there is one that avoids (1,),
so the cancellation argument in problem 7 still holds.

If (i,7) is in the minimum weight matching, then there is a term with value +£2** and
all other terms have higher values. On the other hand, if it is not in the minimum
weight matching all terms have higher values. Therefore, the statement follows.

The final step is to assign weights to an unweighted graph so that it contains
unique minimum weight matching. Suppose we assign weights uniformly and

independently from {1,... 2|E|}.

Problem 9. Show that the probability there is a unique minimum matching is

> 1/2.

5. DETERMINANTS AND A RANDOMIZED ALGORITHM 69

This is a nice probabilistic proof. Fix the weights of all elements except some (1,7).
For that (i,7), there is a value o such that if w;; > « then (i,j) is in no minimum
wetght matching. Clearly, if w;; < o then il is in every minimum weighl matching.
It is only if w;; = « that there is a minimum weight matching that contains it and
another that does not. We call such an element ambiguous. Note that this argument s
independent of w;;, so the probability that (v,7) is ambiguous is exactly the probability
that w;; = a which is < 1/2n. Therefore, the probability there is an ambiguous edge
is <n/2n =1/2. This is equal to the probability that there is not a unique minimum
matching.

The problem of determining all the numbers required can be done in parallel by
the algorithm of Pan [52]. This gives an algorithm that requires time O(log®m)
with O(n*®m) processors. This shows that finding a perfect matching is in RNC.

Some corollaries of this theorem are that the following are in RNC:

e constructing a maximum cardinality matching,

e constructing a matching in a graph with weighted vertices that covers a set
of maximum weight (with weights in binary),

o finding a maximum flow in a directed graph with edge weights given in
unary.

In contrast, the maximum flow problem with binary weights is complete for P
(with a suitable definition of completeness). Showing it in RNC would imply that
every problem in P is in RNC, a fairly unlikely possibility.

This algorithm is a Monte Carlo algorithm: it always returns an answer, but the
answer may be wrong. A Las Vegas algorithm recognizes when it has the correct
answer, so it either returns a correct answer, or it returns “failure” (it should be
clear that any Las Vegas algorithm can be turned into a Monte Carlo algorithm).
Karloff ([36]) gives a method for transforming any Monte Carlo algorithm for
matching into a Las Vegas algorithm. Not surprisingly, it uses duality.

Recall from the Gallai-Edmonds theorem that the size of a maximum matching
in a graph is related to the set of all nodes missed by at least one maximum
matching (D(G)) and its neighbor set (A(()). The size of a maximum matching
is (|[V[+]A|—¢(D))/2 where ¢(D) is the number of odd components in the subgraph
induced by D. Therefore, if we identify D(G') we can find the size of a maximum
matching. We also know that the size of a perfect matching is always less than or
equal to (V| +|S| — ¢(V = 5))/2 for any S implies that if we misidentify D then
we get an upper bound on the size of a maximum matching.

Problem 10. Give a parallel algorithm to find D supposing you have an
algorithm that finds a maximum matching with probability at least 1 — 1/2".
What is the probability of it finding an incorrect answer?

70 IV. MATCHINGS

For each node v, determine if the graph G — v has the same size matching as G.
If so, place v in D, otherwise not. The probability of our oracle giving at least one
wrong answer is al most (n + 1)27", so the probability of getting the correct D is
IL—(n+1)27"

This gives a Las Vegas algorithm: Run the above algorithm and the matching
algorithm given in parallel. If they agree on the answer, return it. Otherwise
return “failure.”

Finally, consider the exact matching problem: each edge of the graph is colored
either red or blue and an integer k is given. The problem is to find a perfect
matching with exactly & red edges. No deterministic polynomial algorithm is
known for this problem, but it is easy to modify the above algorithm to solve it in
random logarithmic time. According to all the assumptions about class inclusions,
this should imply that there is a polynomial algorithm for this problem.

6. Weighted Matching

We have seen three different methods for the cardinality matching problem:
augmenting paths, cut generation, and determinants. In this section we discuss
generalizing these methods for the case where each edge has a weight and the
objective is to maximize the total weight of the matching. We begin with an
augmenting path algorithm due to Edmonds ([16, 17]).

We have a linear programming formulation for the cardinality case (see sec-
tion 4). We have not yet proved that this formulation is sufficient for the general
case. Again, we will prove the sufficiency by giving an algorithm that gives both
primal and dual solutions. The primal problem is to

Maximize E CijTij

(6) Z x;; <1 forallz
{7:{i.j}eE}
(7) > zi; < (]S]=1)/2 forall S CV,S odd.

{i,j}€E:i€S,j€S8
(8) xi; > 0

With the dual variables associated with 6 be u and those associated with 7 be
w, the dual is

6. WEIGHTED MATCHING 71

Minimize Z u; + Z s
; S

K3

9) w +u; + Z ws < ¢;;
(S:i,5€5)
(10) u,w >0

where rg is (]S —1)/2.

There are two ways to show that a primal and a dual solution are optimal: either
show their costs are the same, or show that they satisfy complementary slackness.
We adopt the second method here. The complementary slackness conditions are:

(11) Zyj >0:>ui—|—uj—|— Z ws = G
{S:i,jeS}
(12) ui>0= > z;=1
{i{i.j}ek}
(13) ws >0 = > Tij =Ts

{i,j}€E:i€S,j€S8

In this algorithm, we always have a primal feasible solution and a dual feasible
solution. These solutions will satisfy 11 and 13. As soon as they also satisty 12
then we terminate.

Problem 1. Give primal and dual feasible solutions that satisfy everything
except 12.

The primal solution is x;; =0 for all 1,5. Set ws =0 for all S and u; = 1/2¢* where

c* is the maximum cost in the graph.

To ensure that 11 is satisfied, we will only do augmentations in the equality—
constrained subgraph: those arcs that satisty 9 with equality. All edges outside of
this subgraph will be set to zero. To ensure 13 we will only assign postive w values
to odd sets that are shrunk in the current graph.

Given a current pair of solutions, there are two ways to satisty 12 at a node:
either the node becomes adjacent to a matching edge (by augmenting from it) or its
dual u is decreased to zero. We create the alternating forest from the unmatched
nodes using only edges in the equality—constrained subgraph (perhaps shrinking
blossoms along the way). Either an augmenting path is found or we will be able to

72 IV. MATCHINGS

decrease the duals on the unmatched nodes keeping primal and dual feasibility as
well as 11 and 13. Let’s begin by seeing how this dual change can be done. Suppose
we decrease the duals of all the unmatched nodes by 6. Let the alternating forest
be F.

Problem 2. What to we have to do to the duals of nodes next to an unmatched
node in F' to satisfy 97 What about those next to them? In general, what do we
have to do to the duals of nodes based on their label odd or even? What about
unlabeled nodes?

We must increase the duals next to the unmatched nodes, then decrease the next layer
of nodes and so on. Every even node (or node in an even pseudonode) has its nodes
decreased by 6 and every odd node (or node in an odd pseudonode) is increased by 6.
Unlabelled nodes are not changed.

It turns out that even nodes, or nodes contained in pseudonodes marked even
have their duals decreased by 6. Odd nodes, or those in odd pseudonodes, are
increased by 6. This has a bad effect on edges completely within a shrunk blossom.
Fortunately, we can modify the w values to offset this.

Problem 3. How can the w values be changed to keep 9 for edges within a
blossom?

The dual for odd blossoms can be decreased by 26 and that for even blossoms increased

by 26.

We still have to find 6. As we change the duals we must be certain that we do
not violate dual feasibility.

Problem 4. There are four possibilities for violating dual feasibility. What are
they?

We decrease duals in two cases: the u for even nodes (by 6) and the w for odd blossoms
(by 26). Neither of these values can go negative. An edge between two even nodes
in different blossoms has its reduced cost decreased by 26 and this cannot go below
¢ij. Finally, an edge between an even node and an unlabeled node has ils reduced cost
decreased by 6 and it also cannotl go below c¢;;.

This gives an algorithm for doing the dual change. Simply calculate the largest
0 that keeps dual feasibility. After the dual change we expand all blossoms with
wg = 0. Those with wg > 0 are not expanded. This implies that shrunk blossoms
may end up later as odd nodes.

As new edges are added to the graph it may be that an edge is added between
two even nodes. If the endnodes are in different trees then an augmentation can
be made; otherwise a blossom can be shrunk. After this, the forest can be retained
and the search for an augmenting path resumed.

6. WEIGHTED MATCHING 73

The algorithm is as follows:

0) Find a primal and dual feasible solution that satisfy 11 and 13.

1) Create an alternating forest in the equality—constrained subgraph. If an
augmenting path is found, go to step 2. Otherwise go to step 3.

2) Augment along the path. Expand all blossoms with wg = 0. If u; = 0 for all

unmatched nodes then stop. Otherwise go to step 1.

3) Change the dual solution using the calculations above. If u; = 0 for all

unmatched nodes then stop. Otherwise add edges to the equality constrained

subgraph. If an edge is added between two even nodes in different components
then go to step 2. If an edge is added between two even nodes in the same
component then shrink the blossom. Go to step 1, continuing from the current

alternating forest.

Problem 5. Show that 11 and 13 are satisfied after an augmentation.

Since we only augment on the equality—constrained subgraph, 11 must be satisfied. For
13 not to be satisfied, we must augment through a set S with ws > 0. But in that
case, S is a pseudonode, so after augmenting rs edges of it are used.

Problem 6. Show that the dual change is nondegenerate (6 > 0).

We will show that each of the four bounds must not be zero.

We know that at least one unmatched node has dual ; 0 (since there is such an
unmatched node). But it must always have been unmatched. Furthermore, since we
began with each node having the same dual, an unmatched node must have the lowest
dual value of all nodes (decreases happen only to even nodes and an unmatched node
is always even). Therefore, all even nodes have dual ; 0.

We decrease blossom duals only if the blossom is odd. But an odd blossom cannot be
formed this iteration, so it must have been formed at a previous augmentation. Then
its w value must have been 5 0 (or else we would have expanded it.

For an edge with two even endnodes, if its 9 value was at equality then it would
be in the equality—constrained subgraph so would give rise to either a blossom or an
augmenting path. Therefore such an edge between two blossoms is not in the equality—
constrained subgraph, so 6 > 0.

Stmilary an edge between an even node an an unlabeled node cannot be in the equality—
constrained subgraph, so 6 > 0.

Problem 7. Show that 11 and 13 are satisfied after a dual change.

This is a tedious case analysis, but follows directly from our argument for how to
change the duals.

The only other point to prove is that the algorithm eventually terminates. It
is clear that no more than n/2 augmentations can be done. We can bound the
number of dual changes between augmentations.

74 IV. MATCHINGS

Problem 8. Show that the number of dual changes between augmentations
is O(n). (Hint: consider the ways 6 is bounded and show that each way cannot
occur too often).

Constder the four bounding cases.
If we ever are bound by the dual of an even node, all unmatched nodes must get dual
0, so we terminate.
If we are bound by an odd pseudonode, then we expand that pseudonode. We do not
create new odd pseudonodes until we augment and there are O(n) odd pseudonodes,
so this case can occur only O(n) times.
If we are bound by an edge with two even endnodes, we either augment or shrink a
blossom. Since we do not expand even pseudonodes until after augmentation, this
case can occur only O(n) times.
If we are bound by an edge from an even node to an unlabeled node we add that node
to the alternating tree. After O(n) such additions, there are no more nodes to add.
Overall, there are O(n) dual changes.

Problem 9. What is the complexity of this algorithm?

Between dual changes, O(m) work must be done, so the total time is O(n*m).

This algorithm shows a number of very important points: the constraints 6, 7,
and 8 are sufficient to define the matching polytope. Since these are the same
constraints as we used in section 4 for cut generation this implies that all the
results there hold just as well for weighted matching.

There are a number of programming tricks known to make this algorithm more
efficient. Lawler ([39]) gives an O(n?) implementation. The fastest known imple-
mentation is that of Ball and Derigs ([7]), who have a very nice examination of
various strategies for implementing matching algorithms.

No determinant technique for weighted matching is known. A parallel imple-
mentation is very unlikely (unless the weights are given in unary), although no
conjectured class inclusions preclude it.

7. Generalizations of Matchings

There are a number of generalizations of matchings. In this section we will
examine the capacitated b—matching problem, a very powerful generalization.

We begin with the uncapacitated b—matching problem. In the previous sections,
we examined the problem of finding a set of edges so that no node is adjacent
to more than one edge. Suppose there is an integer b; associated with each node
t. A natural generalization is to assign integer values to the edges so that the
total on the edges incident to node ¢ is no more than b; for all nodes. This is
the uncapacitated b-matching problem. The problem examined in the previous
sections has b; = 1 for all ¢ so is termed the I-matching problem.

7. GENERALIZATIONS OF MATCHINGS 75

Problem 1. Show that the uncapacitated b-matching problem can be reduced
to the 1-matching problem. Is this a polynomial reduction?

Replace each node i with b; copies. For each arc (¢,7) create an arc from each copy
of © to each copy of j.

It 1s also possible to insist that some or all of the nodes have values totaling
exactly b; next to it (the relationship is exactly the same as that between perfect
and nonperfect matchings).

Although the reduction is not polynomial, it is possible to examine how a 1-
matching algorithm works on this graph and modify it to solve b-matchings. See,
for example, Pulleyblank ([53]) and Anstee ([5]).

Another variant is to place upper bounds on the values that can be assigned to
each edge. If every upper bound is 1, then the problem is called the b—factor, or
f-factor problem; arbitrary capacities result in the capacitated b—matching problem.
Again, this is just 1-matching in disguise (provided a psuedopolynomial reduction
is allowed).

Problem 2. Show that the capacitated b-matching problem can be reduced to
the 1-matching problem.

Replace each edge (i,7) with capacity u(e,j) with a path of three edges (i, k), (k, k'),
(K',7). Let the b(k) = b(K') = ¢(i,7) and insist that k and k' have values exactly
c(2,7) incident to it. The edges (i, k) and (K',j) must be given the same value, and
that value must be less than or equal to c(i,7). This gives the value of (i,7) in the
original graph.

Again, the 1-matching algorithms can be streamlined on these special graphs
to lead to polynomial algorithms.

76

IV. MATCHINGS

Bibliography

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, “Network flows,” Sloan W.P. No. 2059-88,
Sloan School of Management, M.I.T., Cambridge, MA (1988).

[2] R.K. Ahuja and J.B. Orlin, “A fast and simple algorithm for the maximum flow problem,”
Sloan W.P. No. 1905-87, Sloan School of Management, M.I.T.; Cambridge, MA (1987).

[3] R.K. Ahuja and J.B. Orlin, “Improved primal simplex algorithms for shortest path, as-
signment and minimum cost flow problems,” Sloan W.P. No, 2090-88, Sloan School of
Management, M.I.T., Cambridge, MA (1988).

[4] R.K. Ahuja, J.B. Orlin, and R.E. Tarjan, “Improved time bounds for the maximum flow
problem,” Sloan W.P. No. 1966-87, Sloan School of Management, M.I.T., Cambridge, MA
(1988).

[5] R.P. Anstee, “A polynomial algorithm for b-matchings: an alternative approach,” Univer-
sity of Waterloo Research Report CORR 83-22 (1983).

[6] M.O. Ball, L. Bodin and R. Dial, “A matching based heuristic for scheduling mass transit
crews and vehicles,” Transportation Science, 17, 4-31 (1983).

[7] M.O. Ball and U. Derigs, “An analysis of alternative strategies for implementing matching
algorithms,” Networks, 13, 517-550 (1983).

[8] F. Barahona and Eva Tardos, “Note on Weintraub’s minimimum cost flow algorithm,”
manuscript (1988).

[9] D.P. Bertsekas, “Distributed asynchronous relaxation methods for linear network flow prob-
lems,” Lab. for Decision Systems LIDS-P-1986, M.I.T., Cambridge, MA (1985).

[10] N. Chistofides, Graph Theory — An Algorithmic Approach, Academic Press, London
(1975).

[11] D. Conradt and U. Pape, “Maximales Matching in Graphen,” in H. Spath, Ausgewdhlte
Operations Research in FORTRAN, Oldenbourg, Miinchen (1980).

[12] W.H. Cunningham, “A network simplex method,” Mathematical programming, 11: 105-116
(1976).

[13] W.H. Cunningham, “Theoretical properties of the network simplex method,” Mathematics
of Operations Research, 4:196-208 (1979).

[14] U. Derigs, Programming in nelworks and graphs, Lecture Notes in Economics and Mathe-
matical Systems 300, Springer—Verlag, Berlin (1988).

[15] E.A. Dinits, “Algorithm for solution of a problem of maximal flow in a network with power
estimation,” Soviet Math. Dokl., 11, 1277-1280 (1970).

77

78 BIBLIOGRAPHY

[16] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of Mathematics, 17, 449-467
(1965).

[17] J. Edmonds, “Maximum matching and a polyhedron with 0—1 vertices,” Journal of Research
of the National Bureau of Standards, 69B, 125-130 (1965).

[18] J. Edmonds and E.L. Johnson, “Matching, euler tours, and the chinese postman,” Mathe-
matical Programming, 5, 88-124 (1973).

[19] J. Edmonds and R.M. Karp, “Theoretical improvements in algorithmic efficiency for ne-
towrk flow problems,” Journal of the Association for Computing Machinery, 19, 248-264
(1972).

[20] J. Elam, F. Glover, and D. Klingman, “A strongly convergent primal simplex algorithm for
generalized networks,” Mathematics of Operations Research, 4:39-59 (1979).

[21] S. Even and O. Kariv, “An O(n?%) algorithm for maximum matching in general graphs,”
Proc. 16th Annual Symposium of the Foundations of Computer Science, 100-112 (1975).

[22] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton Unversity Press, Princeton,
N.J. (1962).

[23] A. Frank, “Finding feasible vectors of Edmonds—Giles polyhedra,” Journal of Combinatorial
Theory, Series B, 36, 221-239 (1984).

[24] M. Fujii, T. Kasami, and K. Ninomiya, “Optimal sequencing of two equivalent processors,”
SIAM Journal of Applied Mathematics, 17, 784-789 (1969).

[25] H. Gabow, “An efficient implementation of Edmonds’ algorithm for maximum matchings
on graphs,” Journal of the ACM, 23, 221-234 (1975).

[26] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan, “A fast parametric maximum flow algorithm,”
LCSR-TR-95, Laboratory for Computer Science Research, Rutgers University, Rutgers, NJ
(1987).

[27] A.V. Goldberg, S.A. Plotkin, E. Tardos, “Combinatorial algorithms for the generalized
circulation problem,” MIT/LCS/TM-358, Laboratory for Computer Science, MIT, Cam-
bridge, MA (1988).

[28] A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum flow problem,” Pro-
ceedings of the Fighteenth Annual ACM Symposium on the Theory of Computing (1986).

[29] A.V. Goldberg and R.E. Tarjan, “Solving minimum-—cost flow problems by successive ap-
proximation,” Proc. 19th ACM Symposium on the Theory of Computing, 7-18 (1987).

[30] A.V. Goldberg and R.E. Tarjan, “Finding minimum-—cost circulations by canceling negative
cycles,” Proc. 20th ACM Symposium on the Theory of Computing, 388-397 (1988).

[31] D. Goldfarb and J. Hao, “A primal simplex algorithm that solves the maximum flow prob-
lem in at most nm pivots and O(n?m) time,” Department of Industrial Engineering and
Operations Research, Columbia University, New York (1988).

[32] D. Goldfarb, J. Hao, and S. Kai, “Anti—stalling rules for the network simplex algorithm,”
Department of Industrial Engineering and Operations Research, Columbia University, New
York (1987).

[33] R.E. Gomory and T.C. Hu, “Multi—terminal network flows,” SIAM Journal of Applied
Math., 9, 551-556 (1961).

[34] M. Grotschel and O. Holland, “Solving matching problems with linear programming,”
Mathematical Programming, 33, 243-259 (1985).

[35] J.E. Hopcroft and R.M. Karp, “An n5/% algorithm for maximum matching in bipartite
graphs,” SIAM Journal of Computing, 2, 225-231 (1973).

[36] H. Karloff, “A randomized parallel algorithm for the odd set cover problem,” Combinator-
ica, 6, 387-391 (1986).

BIBLIOGRAPHY 79

[37] R.M. Karp, “A characterization of the minimum cycle mean in a digraph,” Discrete Math-
ematics, 23, 309-311 (1978).

[38] R.M. Karp, E. Upfal, and A. Wigderson, “Finding a maximum matching is in random NC,”
Seventeenth Annual Symposium on the Theory of Computing, 22-32 (1985).

[39] E.L. Lawler, Combinatorial Oplimization: Networks and Matroids, Holt Reinhart and Win-
ston, New York (1976).

[40] E.L. Lawler and C.U. Martel, “Computing maximal polymatroidal flows,” Mathematics of
Operations Research, 7, 334-347 (1982).

[41] L. Lovasz and M.D. Plummer, Matching Theory, North Holland, New York (1986).

[42] V.M. Malhotra, M. Pramodh Kumar, and S.N. Maheshwari, “An O(V?) algorithm for
finding maximum flows in networks,” Information Processing Letters 7, 277-278 (1978).

[43] S. Micali and V.V. Vazirani, “An O(v/V E) algorithm for finding maximum matching in
general graphs,” Proc. 21st Annual Symposium on the Foundations of Computer Science,
17-27 (1980).

[44] B. Montreuil, H.D. Ratliff, and M. Goetschalckx, “Matching based interactive facility lay-
out,” IEE Transactions (1988).

[45] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani, “Matching is as easy as matrix inversion,”
Combinatorica, 7, 105-113 (1985).

[46] G.L. Nemhauser and G. Weber, “Optimal set partitioning, matchings, and lagrangian re-
laxation,” Naval Research Logistics Quarterly, 26, 553-563 (1979).

[47] K. Onaga, “Dynamic programming of Oprimum flows in lossy communications nets,” IEEE
Transactions on Circuit Theory, 13:282-287 (1966).

[48] J.B. Orlin, “On the simplex algorithm for networks and generalized networks,” Mathemat-
ical Programming Studies, 24:166-178 (1985).

[49] J.B. Orlin, “A faster strongly polynomial minimum cost flow algorithm,” Proc. 20th ACM
Symposium on the Theory of Computing, 377-387 (1988).

[50] J.B. Orlin and R.K. Ahuja, “New distance—directed algorithms for maximum flow and para-
metric maximum flow problems,” Sloan W.P. No. 1908-87, Sloan School of Management,
Cambridge, MA (1987).

[51] M.W. Padberg and M.R. Rao, “Odd minimum cut-sets and b-matchings,” Mathematics
of Operations Research, 7, 67-80 (1982).

[62] V. Pan, “Fast and efficient algorithms for the exact inversion of integer matrices,” Fifth
Annual Foundations of Software Technology and Theoretical Computer Science Conference,
(1985).

[63] W.R. Pulleyblank, Faces of the Matching Polyhedron, University of Waterloo, Ph.D. Thesis
(1973).

[64] J.T. Schwartz, “Fast probabilistic algorithms for verification of polynomial identitities,”
Journal of the ACM, 27, 701-717 (1980).

[55] E. Tardos, “A strongly polynomial minimum cost circulation algorithm,” Combinatorica,
5, 247-255 (1985).

[56] E. Tardos, C.A. Tovey, and M.A. Trick, “Layered augmenting path algorithms,” Mathe-
matics of Operations Research, 11, 362-370 (1986).

[57] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA (1983)

[58] R.E. Tarjan “A simple version of Karzanov’s blocking flow algorithm,” Operations Research

Letters, 2, 265-268 (1984).

80 BIBLIOGRAPHY

[59] R.E. Tarjan, “Efficiency of the primal network simplex algorithm for the minimum-—cost
circulation problem,” manuscript (1988).

[60] M.A. Trick, Networks with Additional Structured Constraints, Georgia Institute of Tech-
nology, Atlanta, GA (1987).

[61] K. Truemper, “On max flows with gains and pure min—cost flows,” SIAM Journal of Applied
Mathematics, 32: 450-456 (1977).

[62] A. Weintraub, “A primal algorithm to solve network flow problems with convex costs,”
Management Secience, 21, 87-97 (1974).

